OpenVDB  12.0.0
Vec3.h
Go to the documentation of this file.
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: Apache-2.0
3 
4 #ifndef OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
5 #define OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
6 
7 #include <openvdb/Exceptions.h>
8 #include <openvdb/util/Assert.h>
9 #include "Math.h"
10 #include "Tuple.h"
11 #include <algorithm>
12 #include <cmath>
13 #include <type_traits>
14 
15 
16 namespace openvdb {
18 namespace OPENVDB_VERSION_NAME {
19 namespace math {
20 
21 template<typename T> class Mat3;
22 
23 template<typename T>
24 class Vec3: public Tuple<3, T>
25 {
26 public:
27  using value_type = T;
28  using ValueType = T;
29 
30  /// Trivial constructor, the vector is NOT initialized
31  /// @note destructor, copy constructor, assignment operator and
32  /// move constructor are left to be defined by the compiler (default)
33  Vec3() = default;
34 
35  /// @brief Construct a vector all of whose components have the given value.
36  explicit Vec3(T val) { this->mm[0] = this->mm[1] = this->mm[2] = val; }
37 
38  /// Constructor with three arguments, e.g. Vec3d v(1,2,3);
39  Vec3(T x, T y, T z)
40  {
41  this->mm[0] = x;
42  this->mm[1] = y;
43  this->mm[2] = z;
44  }
45 
46  /// Constructor with array argument, e.g. double a[3]; Vec3d v(a);
47  template <typename Source>
48  Vec3(Source *a)
49  {
50  this->mm[0] = static_cast<T>(a[0]);
51  this->mm[1] = static_cast<T>(a[1]);
52  this->mm[2] = static_cast<T>(a[2]);
53  }
54 
55  /// @brief Construct a Vec3 from a 3-Tuple with a possibly different value type.
56  /// @details Type conversion warnings are suppressed.
57  template<typename Source>
58  explicit Vec3(const Tuple<3, Source> &v)
59  {
60  this->mm[0] = static_cast<T>(v[0]);
61  this->mm[1] = static_cast<T>(v[1]);
62  this->mm[2] = static_cast<T>(v[2]);
63  }
64 
65  /// @brief Construct a vector all of whose components have the given value,
66  /// which may be of an arithmetic type different from this vector's value type.
67  /// @details Type conversion warnings are suppressed.
68  template<typename Other>
69  explicit Vec3(Other val,
70  typename std::enable_if<std::is_arithmetic<Other>::value, Conversion>::type = Conversion{})
71  {
72  this->mm[0] = this->mm[1] = this->mm[2] = static_cast<T>(val);
73  }
74 
75  /// @brief Construct a Vec3 from another Vec3 with a possibly different value type.
76  /// @details Type conversion warnings are suppressed.
77  template<typename Other>
78  Vec3(const Vec3<Other>& v)
79  {
80  this->mm[0] = static_cast<T>(v[0]);
81  this->mm[1] = static_cast<T>(v[1]);
82  this->mm[2] = static_cast<T>(v[2]);
83  }
84 
85  /// Reference to the component, e.g. v.x() = 4.5f;
86  T& x() { return this->mm[0]; }
87  T& y() { return this->mm[1]; }
88  T& z() { return this->mm[2]; }
89 
90  /// Get the component, e.g. float f = v.y();
91  T x() const { return this->mm[0]; }
92  T y() const { return this->mm[1]; }
93  T z() const { return this->mm[2]; }
94 
95  T* asPointer() { return this->mm; }
96  const T* asPointer() const { return this->mm; }
97 
98  /// Alternative indexed reference to the elements
99  T& operator()(int i) { return this->mm[i]; }
100 
101  /// Alternative indexed constant reference to the elements,
102  T operator()(int i) const { return this->mm[i]; }
103 
104  /// "this" vector gets initialized to [x, y, z],
105  /// calling v.init(); has same effect as calling v = Vec3::zero();
106  const Vec3<T>& init(T x=0, T y=0, T z=0)
107  {
108  this->mm[0] = x; this->mm[1] = y; this->mm[2] = z;
109  return *this;
110  }
111 
112 
113  /// Set "this" vector to zero
114  const Vec3<T>& setZero()
115  {
116  this->mm[0] = 0; this->mm[1] = 0; this->mm[2] = 0;
117  return *this;
118  }
119 
120  /// @brief Assignment operator
121  /// @details Type conversion warnings are not suppressed.
122  template<typename Source>
123  const Vec3<T>& operator=(const Vec3<Source> &v)
124  {
125  // note: don't static_cast because that suppresses warnings
126  this->mm[0] = v[0];
127  this->mm[1] = v[1];
128  this->mm[2] = v[2];
129 
130  return *this;
131  }
132 
133  /// Test if "this" vector is equivalent to vector v with tolerance of eps
134  bool eq(const Vec3<T> &v, T eps = static_cast<T>(1.0e-7)) const
135  {
136  return isRelOrApproxEqual(this->mm[0], v.mm[0], eps, eps) &&
137  isRelOrApproxEqual(this->mm[1], v.mm[1], eps, eps) &&
138  isRelOrApproxEqual(this->mm[2], v.mm[2], eps, eps);
139  }
140 
141 
142  /// Negation operator, for e.g. v1 = -v2;
143  Vec3<T> operator-() const { return Vec3<T>(-this->mm[0], -this->mm[1], -this->mm[2]); }
144 
145  /// this = v1 + v2
146  /// "this", v1 and v2 need not be distinct objects, e.g. v.add(v1,v);
147  template <typename T0, typename T1>
148  const Vec3<T>& add(const Vec3<T0> &v1, const Vec3<T1> &v2)
149  {
150  this->mm[0] = v1[0] + v2[0];
151  this->mm[1] = v1[1] + v2[1];
152  this->mm[2] = v1[2] + v2[2];
153 
154  return *this;
155  }
156 
157  /// this = v1 - v2
158  /// "this", v1 and v2 need not be distinct objects, e.g. v.sub(v1,v);
159  template <typename T0, typename T1>
160  const Vec3<T>& sub(const Vec3<T0> &v1, const Vec3<T1> &v2)
161  {
162  this->mm[0] = v1[0] - v2[0];
163  this->mm[1] = v1[1] - v2[1];
164  this->mm[2] = v1[2] - v2[2];
165 
166  return *this;
167  }
168 
169  /// this = scalar*v, v need not be a distinct object from "this",
170  /// e.g. v.scale(1.5,v1);
171  template <typename T0, typename T1>
172  const Vec3<T>& scale(T0 scale, const Vec3<T1> &v)
173  {
174  this->mm[0] = scale * v[0];
175  this->mm[1] = scale * v[1];
176  this->mm[2] = scale * v[2];
177 
178  return *this;
179  }
180 
181  template <typename T0, typename T1>
182  const Vec3<T> &div(T0 scale, const Vec3<T1> &v)
183  {
184  this->mm[0] = v[0] / scale;
185  this->mm[1] = v[1] / scale;
186  this->mm[2] = v[2] / scale;
187 
188  return *this;
189  }
190 
191  /// Dot product
192  T dot(const Vec3<T> &v) const
193  {
194  return
195  this->mm[0]*v.mm[0] +
196  this->mm[1]*v.mm[1] +
197  this->mm[2]*v.mm[2];
198  }
199 
200  /// Length of the vector
201  T length() const
202  {
203  return static_cast<T>(sqrt(double(
204  this->mm[0]*this->mm[0] +
205  this->mm[1]*this->mm[1] +
206  this->mm[2]*this->mm[2])));
207  }
208 
209 
210  /// Squared length of the vector, much faster than length() as it
211  /// does not involve square root
212  T lengthSqr() const
213  {
214  return
215  this->mm[0]*this->mm[0] +
216  this->mm[1]*this->mm[1] +
217  this->mm[2]*this->mm[2];
218  }
219 
220  /// Return the cross product of "this" vector and v;
221  Vec3<T> cross(const Vec3<T> &v) const
222  {
223  return Vec3<T>(this->mm[1]*v.mm[2] - this->mm[2]*v.mm[1],
224  this->mm[2]*v.mm[0] - this->mm[0]*v.mm[2],
225  this->mm[0]*v.mm[1] - this->mm[1]*v.mm[0]);
226  }
227 
228 
229  /// this = v1 cross v2, v1 and v2 must be distinct objects than "this"
230  const Vec3<T>& cross(const Vec3<T> &v1, const Vec3<T> &v2)
231  {
232  OPENVDB_ASSERT(this!=&v1);
233  OPENVDB_ASSERT(this!=&v2);
234  this->mm[0] = v1.mm[1]*v2.mm[2] - v1.mm[2]*v2.mm[1];
235  this->mm[1] = v1.mm[2]*v2.mm[0] - v1.mm[0]*v2.mm[2];
236  this->mm[2] = v1.mm[0]*v2.mm[1] - v1.mm[1]*v2.mm[0];
237  return *this;
238  }
239 
240  /// Multiply each element of this vector by @a scalar.
241  template <typename S>
242  const Vec3<T> &operator*=(S scalar)
243  {
245  const auto value0 = this->mm[0] * scalar;
246  const auto value1 = this->mm[1] * scalar;
247  const auto value2 = this->mm[2] * scalar;
249  this->mm[0] = static_cast<T>(value0);
250  this->mm[1] = static_cast<T>(value1);
251  this->mm[2] = static_cast<T>(value2);
252  return *this;
253  }
254 
255  /// Multiply each element of this vector by the corresponding element of the given vector.
256  template <typename S>
257  const Vec3<T> &operator*=(const Vec3<S> &v1)
258  {
259  this->mm[0] *= v1[0];
260  this->mm[1] *= v1[1];
261  this->mm[2] *= v1[2];
262  return *this;
263  }
264 
265  /// Divide each element of this vector by @a scalar.
266  template <typename S>
267  const Vec3<T> &operator/=(S scalar)
268  {
269  this->mm[0] /= scalar;
270  this->mm[1] /= scalar;
271  this->mm[2] /= scalar;
272  return *this;
273  }
274 
275  /// Divide each element of this vector by the corresponding element of the given vector.
276  template <typename S>
277  const Vec3<T> &operator/=(const Vec3<S> &v1)
278  {
279  this->mm[0] /= v1[0];
280  this->mm[1] /= v1[1];
281  this->mm[2] /= v1[2];
282  return *this;
283  }
284 
285  /// Add @a scalar to each element of this vector.
286  template <typename S>
287  const Vec3<T> &operator+=(S scalar)
288  {
290  const auto value0 = this->mm[0] + scalar;
291  const auto value1 = this->mm[1] + scalar;
292  const auto value2 = this->mm[2] + scalar;
294  this->mm[0] = static_cast<T>(value0);
295  this->mm[1] = static_cast<T>(value1);
296  this->mm[2] = static_cast<T>(value2);
297  return *this;
298  }
299 
300  /// Add each element of the given vector to the corresponding element of this vector.
301  template <typename S>
302  const Vec3<T> &operator+=(const Vec3<S> &v1)
303  {
304  this->mm[0] += v1[0];
305  this->mm[1] += v1[1];
306  this->mm[2] += v1[2];
307  return *this;
308  }
309 
310  /// Subtract @a scalar from each element of this vector.
311  template <typename S>
312  const Vec3<T> &operator-=(S scalar)
313  {
314  this->mm[0] -= scalar;
315  this->mm[1] -= scalar;
316  this->mm[2] -= scalar;
317  return *this;
318  }
319 
320  /// Subtract each element of the given vector from the corresponding element of this vector.
321  template <typename S>
322  const Vec3<T> &operator-=(const Vec3<S> &v1)
323  {
324  this->mm[0] -= v1[0];
325  this->mm[1] -= v1[1];
326  this->mm[2] -= v1[2];
327  return *this;
328  }
329 
330  /// Return a reference to itself after the exponent has been
331  /// applied to all the vector components.
332  inline const Vec3<T>& exp()
333  {
334  this->mm[0] = std::exp(this->mm[0]);
335  this->mm[1] = std::exp(this->mm[1]);
336  this->mm[2] = std::exp(this->mm[2]);
337  return *this;
338  }
339 
340  /// Return a reference to itself after log has been
341  /// applied to all the vector components.
342  inline const Vec3<T>& log()
343  {
344  this->mm[0] = std::log(this->mm[0]);
345  this->mm[1] = std::log(this->mm[1]);
346  this->mm[2] = std::log(this->mm[2]);
347  return *this;
348  }
349 
350  /// Return the sum of all the vector components.
351  inline T sum() const
352  {
353  return this->mm[0] + this->mm[1] + this->mm[2];
354  }
355 
356  /// Return the product of all the vector components.
357  inline T product() const
358  {
359  return this->mm[0] * this->mm[1] * this->mm[2];
360  }
361 
362  /// this = normalized this
363  bool normalize(T eps = T(1.0e-7))
364  {
365  T d = length();
366  if (isApproxEqual(d, T(0), eps)) {
367  return false;
368  }
369  *this *= (T(1) / d);
370  return true;
371  }
372 
373 
374  /// return normalized this, throws if null vector
375  Vec3<T> unit(T eps=0) const
376  {
377  T d;
378  return unit(eps, d);
379  }
380 
381  /// return normalized this and length, throws if null vector
382  Vec3<T> unit(T eps, T& len) const
383  {
384  len = length();
385  if (isApproxEqual(len, T(0), eps)) {
386  OPENVDB_THROW(ArithmeticError, "Normalizing null 3-vector");
387  }
388  return *this / len;
389  }
390 
391  /// return normalized this, or (1, 0, 0) if this is null vector
393  {
394  T l2 = lengthSqr();
395  return l2 ? *this / static_cast<T>(sqrt(l2)) : Vec3<T>(1, 0 ,0);
396  }
397 
398  // Number of cols, rows, elements
399  static unsigned numRows() { return 1; }
400  static unsigned numColumns() { return 3; }
401  static unsigned numElements() { return 3; }
402 
403  /// Returns the scalar component of v in the direction of onto, onto need
404  /// not be unit. e.g double c = Vec3d::component(v1,v2);
405  T component(const Vec3<T> &onto, T eps = static_cast<T>(1.0e-7)) const
406  {
407  T l = onto.length();
408  if (isApproxEqual(l, T(0), eps)) return 0;
409 
410  return dot(onto)*(T(1)/l);
411  }
412 
413  /// Return the projection of v onto the vector, onto need not be unit
414  /// e.g. Vec3d a = vprojection(n);
415  Vec3<T> projection(const Vec3<T> &onto, T eps = static_cast<T>(1.0e-7)) const
416  {
417  T l = onto.lengthSqr();
418  if (isApproxEqual(l, T(0), eps)) return Vec3::zero();
419 
420  return onto*(dot(onto)*(T(1)/l));
421  }
422 
423  /// Return an arbitrary unit vector perpendicular to v
424  /// Vector this must be a unit vector
425  /// e.g. v = v.normalize(); Vec3d n = v.getArbPerpendicular();
427  {
428  Vec3<T> u;
429  T l;
430 
431  if ( fabs(this->mm[0]) >= fabs(this->mm[1]) ) {
432  // v.x or v.z is the largest magnitude component, swap them
433  l = this->mm[0]*this->mm[0] + this->mm[2]*this->mm[2];
434  l = static_cast<T>(T(1)/sqrt(double(l)));
435  u.mm[0] = -this->mm[2]*l;
436  u.mm[1] = T(0);
437  u.mm[2] = +this->mm[0]*l;
438  } else {
439  // W.y or W.z is the largest magnitude component, swap them
440  l = this->mm[1]*this->mm[1] + this->mm[2]*this->mm[2];
441  l = static_cast<T>(T(1)/sqrt(double(l)));
442  u.mm[0] = T(0);
443  u.mm[1] = +this->mm[2]*l;
444  u.mm[2] = -this->mm[1]*l;
445  }
446 
447  return u;
448  }
449 
450  /// Return a vector with the components of this in ascending order
451  Vec3<T> sorted() const
452  {
453  Vec3<T> r(*this);
454  if( r.mm[0] > r.mm[1] ) std::swap(r.mm[0], r.mm[1]);
455  if( r.mm[1] > r.mm[2] ) std::swap(r.mm[1], r.mm[2]);
456  if( r.mm[0] > r.mm[1] ) std::swap(r.mm[0], r.mm[1]);
457  return r;
458  }
459 
460  /// Return the vector (z, y, x)
462  {
463  return Vec3<T>(this->mm[2], this->mm[1], this->mm[0]);
464  }
465 
466  /// Predefined constants, e.g. Vec3d v = Vec3d::xNegAxis();
467  static Vec3<T> zero() { return Vec3<T>(0, 0, 0); }
468  static Vec3<T> ones() { return Vec3<T>(1, 1, 1); }
469 };
470 
471 
472 /// Equality operator, does exact floating point comparisons
473 template <typename T0, typename T1>
474 inline bool operator==(const Vec3<T0> &v0, const Vec3<T1> &v1)
475 {
476  return isExactlyEqual(v0[0], v1[0]) && isExactlyEqual(v0[1], v1[1])
477  && isExactlyEqual(v0[2], v1[2]);
478 }
479 
480 /// Inequality operator, does exact floating point comparisons
481 template <typename T0, typename T1>
482 inline bool operator!=(const Vec3<T0> &v0, const Vec3<T1> &v1) { return !(v0==v1); }
483 
484 /// Multiply each element of the given vector by @a scalar and return the result.
485 template <typename S, typename T>
486 inline Vec3<typename promote<S, T>::type> operator*(S scalar, const Vec3<T> &v) { return v*scalar; }
487 
488 /// Multiply each element of the given vector by @a scalar and return the result.
489 template <typename S, typename T>
491 {
493  result *= scalar;
494  return result;
495 }
496 
497 /// Multiply corresponding elements of @a v0 and @a v1 and return the result.
498 template <typename T0, typename T1>
500 {
501  Vec3<typename promote<T0, T1>::type> result(v0[0] * v1[0], v0[1] * v1[1], v0[2] * v1[2]);
502  return result;
503 }
504 
505 
506 /// Divide @a scalar by each element of the given vector and return the result.
507 template <typename S, typename T>
509 {
510  return Vec3<typename promote<S, T>::type>(scalar/v[0], scalar/v[1], scalar/v[2]);
511 }
512 
513 /// Divide each element of the given vector by @a scalar and return the result.
514 template <typename S, typename T>
516 {
518  result /= scalar;
519  return result;
520 }
521 
522 /// Divide corresponding elements of @a v0 and @a v1 and return the result.
523 template <typename T0, typename T1>
525 {
526  Vec3<typename promote<T0, T1>::type> result(v0[0] / v1[0], v0[1] / v1[1], v0[2] / v1[2]);
527  return result;
528 }
529 
530 /// Add corresponding elements of @a v0 and @a v1 and return the result.
531 template <typename T0, typename T1>
533 {
535  result += v1;
536  return result;
537 }
538 
539 /// Add @a scalar to each element of the given vector and return the result.
540 template <typename S, typename T>
542 {
544  result += scalar;
545  return result;
546 }
547 
548 /// Subtract corresponding elements of @a v0 and @a v1 and return the result.
549 template <typename T0, typename T1>
551 {
553  result -= v1;
554  return result;
555 }
556 
557 /// Subtract @a scalar from each element of the given vector and return the result.
558 template <typename S, typename T>
560 {
562  result -= scalar;
563  return result;
564 }
565 
566 /// Angle between two vectors, the result is between [0, pi],
567 /// e.g. double a = Vec3d::angle(v1,v2);
568 template <typename T>
569 inline T angle(const Vec3<T> &v1, const Vec3<T> &v2)
570 {
571  Vec3<T> c = v1.cross(v2);
572  return static_cast<T>(atan2(c.length(), v1.dot(v2)));
573 }
574 
575 template <typename T>
576 inline bool
577 isApproxEqual(const Vec3<T>& a, const Vec3<T>& b)
578 {
579  return a.eq(b);
580 }
581 template <typename T>
582 inline bool
583 isApproxEqual(const Vec3<T>& a, const Vec3<T>& b, const Vec3<T>& eps)
584 {
585  return isApproxEqual(a.x(), b.x(), eps.x()) &&
586  isApproxEqual(a.y(), b.y(), eps.y()) &&
587  isApproxEqual(a.z(), b.z(), eps.z());
588 }
589 
590 template<typename T>
591 inline Vec3<T>
592 Abs(const Vec3<T>& v)
593 {
594  return Vec3<T>(Abs(v[0]), Abs(v[1]), Abs(v[2]));
595 }
596 
597 /// Orthonormalize vectors v1, v2 and v3 and store back the resulting
598 /// basis e.g. Vec3d::orthonormalize(v1,v2,v3);
599 template <typename T>
600 inline void orthonormalize(Vec3<T> &v1, Vec3<T> &v2, Vec3<T> &v3)
601 {
602  // If the input vectors are v0, v1, and v2, then the Gram-Schmidt
603  // orthonormalization produces vectors u0, u1, and u2 as follows,
604  //
605  // u0 = v0/|v0|
606  // u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
607  // u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
608  //
609  // where |A| indicates length of vector A and A*B indicates dot
610  // product of vectors A and B.
611 
612  // compute u0
613  v1.normalize();
614 
615  // compute u1
616  T d0 = v1.dot(v2);
617  v2 -= v1*d0;
618  v2.normalize();
619 
620  // compute u2
621  T d1 = v2.dot(v3);
622  d0 = v1.dot(v3);
623  v3 -= v1*d0 + v2*d1;
624  v3.normalize();
625 }
626 
627 /// @remark We are switching to a more explicit name because the semantics
628 /// are different from std::min/max. In that case, the function returns a
629 /// reference to one of the objects based on a comparator. Here, we must
630 /// fabricate a new object which might not match either of the inputs.
631 
632 /// Return component-wise minimum of the two vectors.
633 template <typename T>
634 inline Vec3<T> minComponent(const Vec3<T> &v1, const Vec3<T> &v2)
635 {
636  return Vec3<T>(
637  std::min(v1.x(), v2.x()),
638  std::min(v1.y(), v2.y()),
639  std::min(v1.z(), v2.z()));
640 }
641 
642 /// Return component-wise maximum of the two vectors.
643 template <typename T>
644 inline Vec3<T> maxComponent(const Vec3<T> &v1, const Vec3<T> &v2)
645 {
646  return Vec3<T>(
647  std::max(v1.x(), v2.x()),
648  std::max(v1.y(), v2.y()),
649  std::max(v1.z(), v2.z()));
650 }
651 
652 /// @brief Return a vector with the exponent applied to each of
653 /// the components of the input vector.
654 template <typename T>
655 inline Vec3<T> Exp(Vec3<T> v) { return v.exp(); }
656 
657 /// @brief Return a vector with log applied to each of
658 /// the components of the input vector.
659 template <typename T>
660 inline Vec3<T> Log(Vec3<T> v) { return v.log(); }
661 
666 
671 
672 } // namespace math
673 } // namespace OPENVDB_VERSION_NAME
674 } // namespace openvdb
675 
676 #endif // OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
Real value_type
Definition: Vec3.h:27
#define OPENVDB_NO_TYPE_CONVERSION_WARNING_BEGIN
Bracket code with OPENVDB_NO_TYPE_CONVERSION_WARNING_BEGIN/_END, to inhibit warnings about type conve...
Definition: Platform.h:221
T & operator()(int i)
Alternative indexed reference to the elements.
Definition: Vec3.h:99
bool isExactlyEqual(const T0 &a, const T1 &b)
Return true if a is exactly equal to b.
Definition: Math.h:443
T & y()
Definition: Vec3.h:87
Vec3< T > unit(T eps=0) const
return normalized this, throws if null vector
Definition: Vec3.h:375
const Vec3< T > & operator/=(const Vec3< S > &v1)
Divide each element of this vector by the corresponding element of the given vector.
Definition: Vec3.h:277
Vec3< T > getArbPerpendicular() const
Definition: Vec3.h:426
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:74
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
T * asPointer()
Definition: Vec3.h:95
Vec3(const Vec3< Other > &v)
Construct a Vec3 from another Vec3 with a possibly different value type.
Definition: Vec3.h:78
static unsigned numColumns()
Definition: Vec3.h:400
Vec3(T x, T y, T z)
Constructor with three arguments, e.g. Vec3d v(1,2,3);.
Definition: Vec3.h:39
Vec3< T > Log(Vec3< T > v)
Return a vector with log applied to each of the components of the input vector.
Definition: Vec3.h:660
const Vec3< T > & operator-=(S scalar)
Subtract scalar from each element of this vector.
Definition: Vec3.h:312
const Vec3< T > & exp()
Definition: Vec3.h:332
const Vec3< T > & sub(const Vec3< T0 > &v1, const Vec3< T1 > &v2)
Definition: Vec3.h:160
Vec3< T > operator-() const
Negation operator, for e.g. v1 = -v2;.
Definition: Vec3.h:143
static Vec3< T > zero()
Predefined constants, e.g. Vec3d v = Vec3d::xNegAxis();.
Definition: Vec3.h:467
Vec3< T > Exp(Vec3< T > v)
Return a vector with the exponent applied to each of the components of the input vector.
Definition: Vec3.h:655
T & z()
Definition: Vec3.h:88
Vec3< typename promote< T0, T1 >::type > operator*(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Multiply corresponding elements of v0 and v1 and return the result.
Definition: Vec3.h:499
const Vec3< T > & operator=(const Vec3< Source > &v)
Assignment operator.
Definition: Vec3.h:123
const T * asPointer() const
Definition: Vec3.h:96
const Vec3< T > & operator*=(S scalar)
Multiply each element of this vector by scalar.
Definition: Vec3.h:242
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:110
Vec3< T > unit(T eps, T &len) const
return normalized this and length, throws if null vector
Definition: Vec3.h:382
T operator()(int i) const
Alternative indexed constant reference to the elements,.
Definition: Vec3.h:102
#define OPENVDB_NO_TYPE_CONVERSION_WARNING_END
Definition: Platform.h:222
Vec3(Source *a)
Constructor with array argument, e.g. double a[3]; Vec3d v(a);.
Definition: Vec3.h:48
Vec3< T > reversed() const
Return the vector (z, y, x)
Definition: Vec3.h:461
const Vec3< T > & scale(T0 scale, const Vec3< T1 > &v)
Definition: Vec3.h:172
const Vec3< T > & operator/=(S scalar)
Divide each element of this vector by scalar.
Definition: Vec3.h:267
const Vec3< T > & log()
Definition: Vec3.h:342
bool operator==(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Equality operator, does exact floating point comparisons.
Definition: Vec3.h:474
const Vec3< T > & setZero()
Set "this" vector to zero.
Definition: Vec3.h:114
bool normalize(T eps=T(1.0e-7))
this = normalized this
Definition: Vec3.h:363
T & x()
Reference to the component, e.g. v.x() = 4.5f;.
Definition: Vec3.h:86
static unsigned numElements()
Definition: Vec3.h:401
Vec3< typename promote< S, T >::type > operator-(const Vec3< T > &v, S scalar)
Subtract scalar from each element of the given vector and return the result.
Definition: Vec3.h:559
const Vec3< T > & add(const Vec3< T0 > &v1, const Vec3< T1 > &v2)
Definition: Vec3.h:148
bool eq(const Vec3< T > &v, T eps=static_cast< T >(1.0e-7)) const
Test if "this" vector is equivalent to vector v with tolerance of eps.
Definition: Vec3.h:134
Dummy class for tag dispatch of conversion constructors.
Definition: Tuple.h:24
T y() const
Definition: Vec3.h:92
Vec3< T > cross(const Vec3< T > &v) const
Return the cross product of "this" vector and v;.
Definition: Vec3.h:221
#define OPENVDB_ASSERT(X)
Definition: Assert.h:41
Vec3(Other val, typename std::enable_if< std::is_arithmetic< Other >::value, Conversion >::type=Conversion{})
Construct a vector all of whose components have the given value, which may be of an arithmetic type d...
Definition: Vec3.h:69
Definition: Tuple.h:30
Vec3< T > projection(const Vec3< T > &onto, T eps=static_cast< T >(1.0e-7)) const
Definition: Vec3.h:415
MatType scale(const Vec3< typename MatType::value_type > &s)
Return a matrix that scales by s.
Definition: Mat.h:615
T component(const Vec3< T > &onto, T eps=static_cast< T >(1.0e-7)) const
Definition: Vec3.h:405
Vec3< typename promote< T0, T1 >::type > operator/(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Divide corresponding elements of v0 and v1 and return the result.
Definition: Vec3.h:524
void orthonormalize(Vec3< T > &v1, Vec3< T > &v2, Vec3< T > &v3)
Definition: Vec3.h:600
MatType unit(const MatType &mat, typename MatType::value_type eps=1.0e-8)
Return a copy of the given matrix with its upper 3×3 rows normalized.
Definition: Mat.h:648
Definition: Exceptions.h:13
const Vec3< T > & operator*=(const Vec3< S > &v1)
Multiply each element of this vector by the corresponding element of the given vector.
Definition: Vec3.h:257
Real ValueType
Definition: Vec3.h:28
Vec3< T > Abs(const Vec3< T > &v)
Definition: Vec3.h:592
Vec3< typename promote< S, T >::type > operator+(const Vec3< T > &v, S scalar)
Add scalar to each element of the given vector and return the result.
Definition: Vec3.h:541
bool isRelOrApproxEqual(const Type &a, const Type &b, const Type &absTol, const Type &relTol)
Definition: Math.h:453
const Vec3< T > & cross(const Vec3< T > &v1, const Vec3< T > &v2)
this = v1 cross v2, v1 and v2 must be distinct objects than "this"
Definition: Vec3.h:230
T sum() const
Return the sum of all the vector components.
Definition: Vec3.h:351
Vec3< T > unitSafe() const
return normalized this, or (1, 0, 0) if this is null vector
Definition: Vec3.h:392
Vec3< T > minComponent(const Vec3< T > &v1, const Vec3< T > &v2)
Return component-wise minimum of the two vectors.
Definition: Vec3.h:634
Definition: Mat.h:165
const Vec3< T > & operator+=(S scalar)
Add scalar to each element of this vector.
Definition: Vec3.h:287
const Vec3< T > & div(T0 scale, const Vec3< T1 > &v)
Definition: Vec3.h:182
Definition: Exceptions.h:56
const Vec3< T > & init(T x=0, T y=0, T z=0)
Definition: Vec3.h:106
T z() const
Definition: Vec3.h:93
const Vec3< T > & operator-=(const Vec3< S > &v1)
Subtract each element of the given vector from the corresponding element of this vector.
Definition: Vec3.h:322
Vec3(T val)
Construct a vector all of whose components have the given value.
Definition: Vec3.h:36
Vec3< T > sorted() const
Return a vector with the components of this in ascending order.
Definition: Vec3.h:451
T x() const
Get the component, e.g. float f = v.y();.
Definition: Vec3.h:91
const Vec3< T > & operator+=(const Vec3< S > &v1)
Add each element of the given vector to the corresponding element of this vector. ...
Definition: Vec3.h:302
const std::enable_if<!VecTraits< T >::IsVec, T >::type & min(const T &a, const T &b)
Definition: Composite.h:106
T angle(const Vec3< T > &v1, const Vec3< T > &v2)
Definition: Vec3.h:569
T length() const
Length of the vector.
Definition: Vec3.h:201
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:121
Vec3(const Tuple< 3, Source > &v)
Construct a Vec3 from a 3-Tuple with a possibly different value type.
Definition: Vec3.h:58
Vec3< T > maxComponent(const Vec3< T > &v1, const Vec3< T > &v2)
Return component-wise maximum of the two vectors.
Definition: Vec3.h:644
static Vec3< T > ones()
Definition: Vec3.h:468
T lengthSqr() const
Definition: Vec3.h:212
T dot(const Vec3< T > &v) const
Dot product.
Definition: Vec3.h:192
T product() const
Return the product of all the vector components.
Definition: Vec3.h:357
bool operator!=(const Vec3< T0 > &v0, const Vec3< T1 > &v1)
Inequality operator, does exact floating point comparisons.
Definition: Vec3.h:482
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:218
bool isApproxEqual(const Vec3< T > &a, const Vec3< T > &b, const Vec3< T > &eps)
Definition: Vec3.h:583
#define OPENVDB_IS_POD(Type)
Definition: Math.h:56
static unsigned numRows()
Definition: Vec3.h:399