OpenVDB  12.0.0
ConjGradient.h
Go to the documentation of this file.
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: Apache-2.0
3 
4 /// @file ConjGradient.h
5 /// @authors D.J. Hill, Peter Cucka
6 /// @brief Preconditioned conjugate gradient solver (solves @e Ax = @e b using
7 /// the conjugate gradient method with one of a selection of preconditioners)
8 
9 #ifndef OPENVDB_MATH_CONJGRADIENT_HAS_BEEN_INCLUDED
10 #define OPENVDB_MATH_CONJGRADIENT_HAS_BEEN_INCLUDED
11 
12 #include <openvdb/Exceptions.h>
13 #include <openvdb/Types.h>
14 #include <openvdb/util/logging.h>
15 #include <openvdb/util/Assert.h>
17 #include "Math.h" // for Abs(), isZero(), Max(), Sqrt()
18 #include <tbb/parallel_for.h>
19 #include <tbb/parallel_reduce.h>
20 #include <algorithm> // for std::lower_bound()
21 #include <cmath> // for std::isfinite()
22 #include <limits>
23 #include <sstream>
24 #include <string>
25 
26 
27 namespace openvdb {
29 namespace OPENVDB_VERSION_NAME {
30 namespace math {
31 namespace pcg {
32 
33 using SizeType = Index32;
34 
35 using SizeRange = tbb::blocked_range<SizeType>;
36 
37 template<typename ValueType> class Vector;
38 
39 template<typename ValueType, SizeType STENCIL_SIZE> class SparseStencilMatrix;
40 
41 template<typename ValueType> class Preconditioner;
42 template<typename MatrixType> class JacobiPreconditioner;
43 template<typename MatrixType> class IncompleteCholeskyPreconditioner;
44 
45 /// Information about the state of a conjugate gradient solution
46 struct State {
47  bool success;
49  double relativeError;
50  double absoluteError;
51 };
52 
53 
54 /// Return default termination conditions for a conjugate gradient solver.
55 template<typename ValueType>
56 inline State
58 {
59  State s;
60  s.success = false;
61  s.iterations = 50;
62  s.relativeError = 1.0e-6;
63  s.absoluteError = std::numeric_limits<ValueType>::epsilon() * 100.0;
64  return s;
65 }
66 
67 
68 ////////////////////////////////////////
69 
70 
71 /// @brief Solve @e Ax = @e b via the preconditioned conjugate gradient method.
72 ///
73 /// @param A a symmetric, positive-definite, @e N x @e N matrix
74 /// @param b a vector of size @e N
75 /// @param x a vector of size @e N
76 /// @param preconditioner a Preconditioner matrix
77 /// @param termination termination conditions given as a State object with the following fields:
78 /// <dl>
79 /// <dt><i>success</i>
80 /// <dd>ignored
81 /// <dt><i>iterations</i>
82 /// <dd>the maximum number of iterations, with or without convergence
83 /// <dt><i>relativeError</i>
84 /// <dd>the relative error ||<i>b</i> &minus; <i>Ax</i>|| / ||<i>b</i>||
85 /// that denotes convergence
86 /// <dt><i>absoluteError</i>
87 /// <dd>the absolute error ||<i>b</i> &minus; <i>Ax</i>|| that denotes convergence
88 ///
89 /// @throw ArithmeticError if either @a x or @a b is not of the appropriate size.
90 template<typename PositiveDefMatrix>
91 inline State
92 solve(
93  const PositiveDefMatrix& A,
97  const State& termination = terminationDefaults<typename PositiveDefMatrix::ValueType>());
98 
99 
100 /// @brief Solve @e Ax = @e b via the preconditioned conjugate gradient method.
101 ///
102 /// @param A a symmetric, positive-definite, @e N x @e N matrix
103 /// @param b a vector of size @e N
104 /// @param x a vector of size @e N
105 /// @param preconditioner a Preconditioner matrix
106 /// @param termination termination conditions given as a State object with the following fields:
107 /// <dl>
108 /// <dt><i>success</i>
109 /// <dd>ignored
110 /// <dt><i>iterations</i>
111 /// <dd>the maximum number of iterations, with or without convergence
112 /// <dt><i>relativeError</i>
113 /// <dd>the relative error ||<i>b</i> &minus; <i>Ax</i>|| / ||<i>b</i>||
114 /// that denotes convergence
115 /// <dt><i>absoluteError</i>
116 /// <dd>the absolute error ||<i>b</i> &minus; <i>Ax</i>|| that denotes convergence
117 /// @param interrupter an object adhering to the util::NullInterrupter interface
118 /// with which computation can be interrupted
119 ///
120 /// @throw ArithmeticError if either @a x or @a b is not of the appropriate size.
121 /// @throw RuntimeError if the computation is interrupted.
122 template<typename PositiveDefMatrix, typename Interrupter>
123 inline State
124 solve(
125  const PositiveDefMatrix& A,
129  Interrupter& interrupter,
130  const State& termination = terminationDefaults<typename PositiveDefMatrix::ValueType>());
131 
132 
133 ////////////////////////////////////////
134 
135 
136 /// Lightweight, variable-length vector
137 template<typename T>
138 class Vector
139 {
140 public:
141  using ValueType = T;
143 
144  /// Construct an empty vector.
145  Vector(): mData(nullptr), mSize(0) {}
146  /// Construct a vector of @a n elements, with uninitialized values.
147  Vector(SizeType n): mData(new T[n]), mSize(n) {}
148  /// Construct a vector of @a n elements and initialize each element to the given value.
149  Vector(SizeType n, const ValueType& val): mData(new T[n]), mSize(n) { this->fill(val); }
150 
151  ~Vector() { mSize = 0; delete[] mData; mData = nullptr; }
152 
153  /// Deep copy the given vector.
154  Vector(const Vector&);
155  /// Deep copy the given vector.
156  Vector& operator=(const Vector&);
157 
158  /// Return the number of elements in this vector.
159  SizeType size() const { return mSize; }
160  /// Return @c true if this vector has no elements.
161  bool empty() const { return (mSize == 0); }
162 
163  /// @brief Reset this vector to have @a n elements, with uninitialized values.
164  /// @warning All of this vector's existing values will be lost.
165  void resize(SizeType n);
166 
167  /// Swap internal storage with another vector, which need not be the same size.
168  void swap(Vector& other) { std::swap(mData, other.mData); std::swap(mSize, other.mSize); }
169 
170  /// Set all elements of this vector to @a value.
171  void fill(const ValueType& value);
172 
173  //@{
174  /// @brief Multiply each element of this vector by @a s.
175  template<typename Scalar> void scale(const Scalar& s);
176  template<typename Scalar> Vector& operator*=(const Scalar& s) { this->scale(s); return *this; }
177  //@}
178 
179  /// Return the dot product of this vector with the given vector, which must be the same size.
180  ValueType dot(const Vector&) const;
181 
182  /// Return the infinity norm of this vector.
183  ValueType infNorm() const;
184  /// Return the L2 norm of this vector.
185  ValueType l2Norm() const { return Sqrt(this->dot(*this)); }
186 
187  /// Return @c true if every element of this vector has a finite value.
188  bool isFinite() const;
189 
190  /// @brief Return @c true if this vector is equivalent to the given vector
191  /// to within the specified tolerance.
192  template<typename OtherValueType>
193  bool eq(const Vector<OtherValueType>& other,
194  ValueType eps = Tolerance<ValueType>::value()) const;
195 
196  /// Return a string representation of this vector.
197  std::string str() const;
198 
199  //@{
200  /// @brief Return the value of this vector's ith element.
201  inline T& at(SizeType i) { return mData[i]; }
202  inline const T& at(SizeType i) const { return mData[i]; }
203  inline T& operator[](SizeType i) { return this->at(i); }
204  inline const T& operator[](SizeType i) const { return this->at(i); }
205  //@}
206 
207  //@{
208  /// @brief Return a pointer to this vector's elements.
209  inline T* data() { return mData; }
210  inline const T* data() const { return mData; }
211  inline const T* constData() const { return mData; }
212  //@}
213 
214 private:
215  // Functor for use with tbb::parallel_for()
216  template<typename Scalar> struct ScaleOp;
217  struct DeterministicDotProductOp;
218  // Functors for use with tbb::parallel_reduce()
219  template<typename OtherValueType> struct EqOp;
220  struct InfNormOp;
221  struct IsFiniteOp;
222 
223  T* mData;
224  SizeType mSize;
225 };
226 
229 
230 
231 ////////////////////////////////////////
232 
233 
234 /// @brief Sparse, square matrix representing a 3D stencil operator of size @a STENCIL_SIZE
235 /// @details The implementation is a variation on compressed row storage (CRS).
236 template<typename ValueType_, SizeType STENCIL_SIZE>
238 {
239 public:
240  using ValueType = ValueType_;
243 
244  class ConstValueIter;
245  class ConstRow;
246  class RowEditor;
247 
248  static inline constexpr ValueType sZeroValue = zeroVal<ValueType>();
249 
250  /// Construct an @a n x @a n matrix with at most @a STENCIL_SIZE nonzero elements per row.
252 
253  /// Deep copy the given matrix.
255 
256  //@{
257  /// Return the number of rows in this matrix.
258  SizeType numRows() const { return mNumRows; }
259  SizeType size() const { return mNumRows; }
260  //@}
261 
262  /// @brief Set the value at the given coordinates.
263  /// @warning It is not safe to set values in the same row simultaneously
264  /// from multiple threads.
265  void setValue(SizeType row, SizeType col, const ValueType&);
266 
267  //@{
268  /// @brief Return the value at the given coordinates.
269  /// @warning It is not safe to get values from a row while another thread
270  /// is setting values in that row.
271  const ValueType& getValue(SizeType row, SizeType col) const;
272  const ValueType& operator()(SizeType row, SizeType col) const;
273  //@}
274 
275  /// Return a read-only view onto the given row of this matrix.
276  ConstRow getConstRow(SizeType row) const;
277 
278  /// Return a read/write view onto the given row of this matrix.
279  RowEditor getRowEditor(SizeType row);
280 
281  //@{
282  /// @brief Multiply all elements in the matrix by @a s;
283  template<typename Scalar> void scale(const Scalar& s);
284  template<typename Scalar>
285  SparseStencilMatrix& operator*=(const Scalar& s) { this->scale(s); return *this; }
286  //@}
287 
288  /// @brief Multiply this matrix by @a inVec and return the result in @a resultVec.
289  /// @throw ArithmeticError if either @a inVec or @a resultVec is not of size @e N,
290  /// where @e N x @e N is the size of this matrix.
291  template<typename VecValueType>
292  void vectorMultiply(const Vector<VecValueType>& inVec, Vector<VecValueType>& resultVec) const;
293 
294  /// @brief Multiply this matrix by the vector represented by the array @a inVec
295  /// and return the result in @a resultVec.
296  /// @warning Both @a inVec and @a resultVec must have at least @e N elements,
297  /// where @e N x @e N is the size of this matrix.
298  template<typename VecValueType>
299  void vectorMultiply(const VecValueType* inVec, VecValueType* resultVec) const;
300 
301  /// @brief Return @c true if this matrix is equivalent to the given matrix
302  /// to within the specified tolerance.
303  template<typename OtherValueType>
305  ValueType eps = Tolerance<ValueType>::value()) const;
306 
307  /// Return @c true if every element of this matrix has a finite value.
308  bool isFinite() const;
309 
310  /// Return a string representation of this matrix.
311  std::string str() const;
312 
313 private:
314  struct RowData {
315  RowData(ValueType* v, SizeType* c, SizeType& s): mVals(v), mCols(c), mSize(s) {}
316  ValueType* mVals; SizeType* mCols; SizeType& mSize;
317  };
318 
319  struct ConstRowData {
320  ConstRowData(const ValueType* v, const SizeType* c, const SizeType& s):
321  mVals(v), mCols(c), mSize(s) {}
322  const ValueType* mVals; const SizeType* mCols; const SizeType& mSize;
323  };
324 
325  /// Base class for row accessors
326  template<typename DataType_ = RowData>
327  class RowBase
328  {
329  public:
330  using DataType = DataType_;
331 
332  static SizeType capacity() { return STENCIL_SIZE; }
333 
334  RowBase(const DataType& data): mData(data) {}
335 
336  bool empty() const { return (mData.mSize == 0); }
337  const SizeType& size() const { return mData.mSize; }
338 
339  const ValueType& getValue(SizeType columnIdx, bool& active) const;
340  const ValueType& getValue(SizeType columnIdx) const;
341 
342  /// Return an iterator over the stored values in this row.
343  ConstValueIter cbegin() const;
344 
345  /// @brief Return @c true if this row is equivalent to the given row
346  /// to within the specified tolerance.
347  template<typename OtherDataType>
348  bool eq(const RowBase<OtherDataType>& other,
349  ValueType eps = Tolerance<ValueType>::value()) const;
350 
351  /// @brief Return the dot product of this row with the first
352  /// @a vecSize elements of @a inVec.
353  /// @warning @a inVec must have at least @a vecSize elements.
354  template<typename VecValueType>
355  VecValueType dot(const VecValueType* inVec, SizeType vecSize) const;
356 
357  /// Return the dot product of this row with the given vector.
358  template<typename VecValueType>
359  VecValueType dot(const Vector<VecValueType>& inVec) const;
360 
361  /// Return a string representation of this row.
362  std::string str() const;
363 
364  protected:
365  friend class ConstValueIter;
366 
367  const ValueType& value(SizeType i) const { return mData.mVals[i]; }
368  SizeType column(SizeType i) const { return mData.mCols[i]; }
369 
370  /// @brief Return the array index of the first column index that is
371  /// equal to <i>or greater than</i> the given column index.
372  /// @note If @a columnIdx is larger than any existing column index,
373  /// the return value will point beyond the end of the array.
374  SizeType find(SizeType columnIdx) const;
375 
376  DataType mData;
377  };
378 
379  using ConstRowBase = RowBase<ConstRowData>;
380 
381 public:
382  /// Iterator over the stored values in a row of this matrix
384  {
385  public:
386  const ValueType& operator*() const
387  {
388  if (mData.mSize == 0) return SparseStencilMatrix::sZeroValue;
389  return mData.mVals[mCursor];
390  }
391 
392  SizeType column() const { return mData.mCols[mCursor]; }
393 
394  void increment() { mCursor++; }
395  ConstValueIter& operator++() { increment(); return *this; }
396  operator bool() const { return (mCursor < mData.mSize); }
397 
398  void reset() { mCursor = 0; }
399 
400  private:
401  friend class SparseStencilMatrix;
402  ConstValueIter(const RowData& d): mData(d.mVals, d.mCols, d.mSize), mCursor(0) {}
403  ConstValueIter(const ConstRowData& d): mData(d), mCursor(0) {}
404 
405  const ConstRowData mData;
406  SizeType mCursor;
407  };
408 
409 
410  /// Read-only accessor to a row of this matrix
411  class ConstRow: public ConstRowBase
412  {
413  public:
414  ConstRow(const ValueType* valueHead, const SizeType* columnHead, const SizeType& rowSize);
415  }; // class ConstRow
416 
417 
418  /// Read/write accessor to a row of this matrix
419  class RowEditor: public RowBase<>
420  {
421  public:
422  RowEditor(ValueType* valueHead, SizeType* columnHead, SizeType& rowSize, SizeType colSize);
423 
424  /// Set the number of entries in this row to zero.
425  void clear();
426 
427  /// @brief Set the value of the entry in the specified column.
428  /// @return the current number of entries stored in this row.
429  SizeType setValue(SizeType column, const ValueType& value);
430 
431  //@{
432  /// @brief Scale all of the entries in this row.
433  template<typename Scalar> void scale(const Scalar&);
434  template<typename Scalar>
435  RowEditor& operator*=(const Scalar& s) { this->scale(s); return *this; }
436  //@}
437 
438  private:
439  const SizeType mNumColumns; // used only for bounds checking
440  }; // class RowEditor
441 
442 private:
443  // Functors for use with tbb::parallel_for()
444  struct MatrixCopyOp;
445  template<typename VecValueType> struct VecMultOp;
446  template<typename Scalar> struct RowScaleOp;
447 
448  // Functors for use with tbb::parallel_reduce()
449  struct IsFiniteOp;
450  template<typename OtherValueType> struct EqOp;
451 
452  const SizeType mNumRows;
453  std::unique_ptr<ValueType[]> mValueArray;
454  std::unique_ptr<SizeType[]> mColumnIdxArray;
455  std::unique_ptr<SizeType[]> mRowSizeArray;
456 }; // class SparseStencilMatrix
457 
458 
459 ////////////////////////////////////////
460 
461 
462 /// Base class for conjugate gradient preconditioners
463 template<typename T>
464 class Preconditioner
465 {
466 public:
467  using ValueType = T;
469 
470  template<SizeType STENCIL_SIZE> Preconditioner(const SparseStencilMatrix<T, STENCIL_SIZE>&) {}
471  virtual ~Preconditioner() = default;
472 
473  virtual bool isValid() const { return true; }
474 
475  /// @brief Apply this preconditioner to a residue vector:
476  /// @e z = <i>M</i><sup><small>&minus;1</small></sup><i>r</i>
477  /// @param r residue vector
478  /// @param[out] z preconditioned residue vector
479  virtual void apply(const Vector<T>& r, Vector<T>& z) = 0;
480 };
481 
482 
483 ////////////////////////////////////////
484 
485 
486 namespace internal {
487 
488 // Functor for use with tbb::parallel_for() to copy data from one array to another
489 template<typename T>
490 struct CopyOp
491 {
492  CopyOp(const T* from_, T* to_): from(from_), to(to_) {}
493 
494  void operator()(const SizeRange& range) const {
495  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) to[n] = from[n];
496  }
497 
498  const T* from;
499  T* to;
500 };
501 
502 
503 // Functor for use with tbb::parallel_for() to fill an array with a constant value
504 template<typename T>
505 struct FillOp
506 {
507  FillOp(T* data_, const T& val_): data(data_), val(val_) {}
508 
509  void operator()(const SizeRange& range) const {
510  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) data[n] = val;
511  }
512 
513  T* data;
514  const T val;
515 };
516 
517 
518 // Functor for use with tbb::parallel_for() that computes a * x + y
519 template<typename T>
520 struct LinearOp
521 {
522  LinearOp(const T& a_, const T* x_, const T* y_, T* out_): a(a_), x(x_), y(y_), out(out_) {}
523 
524  void operator()(const SizeRange& range) const {
525  if (isExactlyEqual(a, T(1))) {
526  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) out[n] = x[n] + y[n];
527  } else if (isExactlyEqual(a, T(-1))) {
528  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) out[n] = -x[n] + y[n];
529  } else {
530  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) out[n] = a * x[n] + y[n];
531  }
532  }
533 
534  const T a, *x, *y;
535  T* out;
536 };
537 
538 } // namespace internal
539 
540 
541 ////////////////////////////////////////
542 
543 
544 inline std::ostream&
545 operator<<(std::ostream& os, const State& state)
546 {
547  os << (state.success ? "succeeded with " : "")
548  << "rel. err. " << state.relativeError << ", abs. err. " << state.absoluteError
549  << " after " << state.iterations << " iteration" << (state.iterations == 1 ? "" : "s");
550  return os;
551 }
552 
553 
554 ////////////////////////////////////////
555 
556 
557 template<typename T>
558 inline
559 Vector<T>::Vector(const Vector& other): mData(new T[other.mSize]), mSize(other.mSize)
560 {
561  tbb::parallel_for(SizeRange(0, mSize),
562  internal::CopyOp<T>(/*from=*/other.mData, /*to=*/mData));
563 }
564 
565 
566 template<typename T>
567 inline
569 {
570  // Update the internal storage to the correct size
571 
572  if (mSize != other.mSize) {
573  mSize = other.mSize;
574  delete[] mData;
575  mData = new T[mSize];
576  }
577 
578  // Deep copy the data
579  tbb::parallel_for(SizeRange(0, mSize),
580  internal::CopyOp<T>(/*from=*/other.mData, /*to=*/mData));
581 
582  return *this;
583 }
584 
585 
586 template<typename T>
587 inline void
589 {
590  if (n != mSize) {
591  delete[] mData;
592  mData = new T[n];
593  mSize = n;
594  }
595 }
596 
597 
598 template<typename T>
599 inline void
601 {
602  tbb::parallel_for(SizeRange(0, mSize), internal::FillOp<T>(mData, value));
603 }
604 
605 
606 template<typename T>
607 template<typename Scalar>
608 struct Vector<T>::ScaleOp
609 {
610  ScaleOp(T* data_, const Scalar& s_): data(data_), s(s_) {}
611 
612  void operator()(const SizeRange& range) const {
613  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) data[n] *= s;
614  }
615 
616  T* data;
617  const Scalar s;
618 };
619 
620 
621 template<typename T>
622 template<typename Scalar>
623 inline void
624 Vector<T>::scale(const Scalar& s)
625 {
626  tbb::parallel_for(SizeRange(0, mSize), ScaleOp<Scalar>(mData, s));
627 }
628 
629 
630 template<typename T>
632 {
633  DeterministicDotProductOp(const T* a_, const T* b_,
634  const SizeType binCount_, const SizeType arraySize_, T* reducetmp_):
635  a(a_), b(b_), binCount(binCount_), arraySize(arraySize_), reducetmp(reducetmp_) {}
636 
637  void operator()(const SizeRange& range) const
638  {
639  const SizeType binSize = arraySize / binCount;
640 
641  // Iterate over bins (array segments)
642  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
643  const SizeType begin = n * binSize;
644  const SizeType end = (n == binCount-1) ? arraySize : begin + binSize;
645 
646  // Compute the partial sum for this array segment
647  T sum = zeroVal<T>();
648  for (SizeType i = begin; i < end; ++i) { sum += a[i] * b[i]; }
649  // Store the partial sum
650  reducetmp[n] = sum;
651  }
652  }
653 
654 
655  const T* a;
656  const T* b;
660 };
661 
662 template<typename T>
663 inline T
664 Vector<T>::dot(const Vector<T>& other) const
665 {
666  OPENVDB_ASSERT(this->size() == other.size());
667 
668  const T* aData = this->data();
669  const T* bData = other.data();
670 
671  SizeType arraySize = this->size();
672 
673  T result = zeroVal<T>();
674 
675  if (arraySize < 1024) {
676 
677  // Compute the dot product in serial for small arrays
678 
679  for (SizeType n = 0; n < arraySize; ++n) {
680  result += aData[n] * bData[n];
681  }
682 
683  } else {
684 
685  // Compute the dot product by segmenting the arrays into
686  // a predetermined number of sub arrays in parallel and
687  // accumulate the finial result in series.
688 
689  const SizeType binCount = 100;
690  T partialSums[100];
691 
692  tbb::parallel_for(SizeRange(0, binCount),
693  DeterministicDotProductOp(aData, bData, binCount, arraySize, partialSums));
694 
695  for (SizeType n = 0; n < binCount; ++n) {
696  result += partialSums[n];
697  }
698  }
699 
700  return result;
701 }
702 
703 
704 template<typename T>
705 struct Vector<T>::InfNormOp
706 {
707  InfNormOp(const T* data_): data(data_) {}
708 
709  T operator()(const SizeRange& range, T maxValue) const
710  {
711  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
712  maxValue = Max(maxValue, Abs(data[n]));
713  }
714  return maxValue;
715  }
716 
717  const T* data;
718 };
719 
720 
721 template<typename T>
722 inline T
724 {
725  // Parallelize over the elements of this vector.
726  T result = tbb::parallel_reduce(SizeRange(0, this->size()), /*seed=*/zeroVal<T>(),
727  InfNormOp(this->data()), /*join=*/[](T max1, T max2) { return Max(max1, max2); });
728  return result;
729 }
730 
731 
732 template<typename T>
733 struct Vector<T>::IsFiniteOp
734 {
735  IsFiniteOp(const T* data_): data(data_) {}
736 
737  bool operator()(const SizeRange& range, bool finite) const
738  {
739  if (finite) {
740  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
741  if (!std::isfinite(data[n])) return false;
742  }
743  }
744  return finite;
745  }
746 
747  const T* data;
748 };
749 
750 
751 template<typename T>
752 inline bool
754 {
755  // Parallelize over the elements of this vector.
756  bool finite = tbb::parallel_reduce(SizeRange(0, this->size()), /*seed=*/true,
757  IsFiniteOp(this->data()),
758  /*join=*/[](bool finite1, bool finite2) { return (finite1 && finite2); });
759  return finite;
760 }
761 
762 
763 template<typename T>
764 template<typename OtherValueType>
765 struct Vector<T>::EqOp
766 {
767  EqOp(const T* a_, const OtherValueType* b_, T e): a(a_), b(b_), eps(e) {}
768 
769  bool operator()(const SizeRange& range, bool equal) const
770  {
771  if (equal) {
772  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
773  if (!isApproxEqual(a[n], b[n], eps)) return false;
774  }
775  }
776  return equal;
777  }
778 
779  const T* a;
780  const OtherValueType* b;
781  const T eps;
782 };
783 
784 
785 template<typename T>
786 template<typename OtherValueType>
787 inline bool
789 {
790  if (this->size() != other.size()) return false;
791  bool equal = tbb::parallel_reduce(SizeRange(0, this->size()), /*seed=*/true,
792  EqOp<OtherValueType>(this->data(), other.data(), eps),
793  /*join=*/[](bool eq1, bool eq2) { return (eq1 && eq2); });
794  return equal;
795 }
796 
797 
798 template<typename T>
799 inline std::string
801 {
802  std::ostringstream ostr;
803  ostr << "[";
804  std::string sep;
805  for (SizeType n = 0, N = this->size(); n < N; ++n) {
806  ostr << sep << (*this)[n];
807  sep = ", ";
808  }
809  ostr << "]";
810  return ostr.str();
811 }
812 
813 
814 ////////////////////////////////////////
815 
816 
817 template<typename ValueType, SizeType STENCIL_SIZE>
818 inline
820  : mNumRows(numRows)
821  , mValueArray(new ValueType[mNumRows * STENCIL_SIZE])
822  , mColumnIdxArray(new SizeType[mNumRows * STENCIL_SIZE])
823  , mRowSizeArray(new SizeType[mNumRows])
824 {
825  // Initialize the matrix to a null state by setting the size of each row to zero.
826  tbb::parallel_for(SizeRange(0, mNumRows),
827  internal::FillOp<SizeType>(mRowSizeArray.get(), /*value=*/0));
828 }
829 
830 
831 template<typename ValueType, SizeType STENCIL_SIZE>
833 {
835  from(&from_), to(&to_) {}
836 
837  void operator()(const SizeRange& range) const
838  {
839  const ValueType* fromVal = from->mValueArray.get();
840  const SizeType* fromCol = from->mColumnIdxArray.get();
841  ValueType* toVal = to->mValueArray.get();
842  SizeType* toCol = to->mColumnIdxArray.get();
843  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
844  toVal[n] = fromVal[n];
845  toCol[n] = fromCol[n];
846  }
847  }
848 
850 };
851 
852 
853 template<typename ValueType, SizeType STENCIL_SIZE>
854 inline
856  : mNumRows(other.mNumRows)
857  , mValueArray(new ValueType[mNumRows * STENCIL_SIZE])
858  , mColumnIdxArray(new SizeType[mNumRows * STENCIL_SIZE])
859  , mRowSizeArray(new SizeType[mNumRows])
860 {
861  SizeType size = mNumRows * STENCIL_SIZE;
862 
863  // Copy the value and column index arrays from the other matrix to this matrix.
864  tbb::parallel_for(SizeRange(0, size), MatrixCopyOp(/*from=*/other, /*to=*/*this));
865 
866  // Copy the row size array from the other matrix to this matrix.
867  tbb::parallel_for(SizeRange(0, mNumRows),
868  internal::CopyOp<SizeType>(/*from=*/other.mRowSizeArray.get(), /*to=*/mRowSizeArray.get()));
869 }
870 
871 
872 template<typename ValueType, SizeType STENCIL_SIZE>
873 inline void
875  const ValueType& val)
876 {
877  OPENVDB_ASSERT(row < mNumRows);
878  this->getRowEditor(row).setValue(col, val);
879 }
880 
881 
882 template<typename ValueType, SizeType STENCIL_SIZE>
883 inline const ValueType&
885 {
886  OPENVDB_ASSERT(row < mNumRows);
887  return this->getConstRow(row).getValue(col);
888 }
889 
890 
891 template<typename ValueType, SizeType STENCIL_SIZE>
892 inline const ValueType&
894 {
895  return this->getValue(row,col);
896 }
897 
898 
899 template<typename ValueType, SizeType STENCIL_SIZE>
900 template<typename Scalar>
901 struct SparseStencilMatrix<ValueType, STENCIL_SIZE>::RowScaleOp
902 {
903  RowScaleOp(SparseStencilMatrix& m, const Scalar& s_): mat(&m), s(s_) {}
904 
905  void operator()(const SizeRange& range) const
906  {
907  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
908  RowEditor row = mat->getRowEditor(n);
909  row.scale(s);
910  }
911  }
912 
913  SparseStencilMatrix* mat;
914  const Scalar s;
915 };
916 
917 
918 template<typename ValueType, SizeType STENCIL_SIZE>
919 template<typename Scalar>
920 inline void
922 {
923  // Parallelize over the rows in the matrix.
924  tbb::parallel_for(SizeRange(0, mNumRows), RowScaleOp<Scalar>(*this, s));
925 }
926 
927 
928 template<typename ValueType, SizeType STENCIL_SIZE>
929 template<typename VecValueType>
930 struct SparseStencilMatrix<ValueType, STENCIL_SIZE>::VecMultOp
931 {
932  VecMultOp(const SparseStencilMatrix& m, const VecValueType* i, VecValueType* o):
933  mat(&m), in(i), out(o) {}
934 
935  void operator()(const SizeRange& range) const
936  {
937  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
938  ConstRow row = mat->getConstRow(n);
939  out[n] = row.dot(in, mat->numRows());
940  }
941  }
942 
943  const SparseStencilMatrix* mat;
944  const VecValueType* in;
945  VecValueType* out;
946 };
947 
948 
949 template<typename ValueType, SizeType STENCIL_SIZE>
950 template<typename VecValueType>
951 inline void
953  const Vector<VecValueType>& inVec, Vector<VecValueType>& resultVec) const
954 {
955  if (inVec.size() != mNumRows) {
956  OPENVDB_THROW(ArithmeticError, "matrix and input vector have incompatible sizes ("
957  << mNumRows << "x" << mNumRows << " vs. " << inVec.size() << ")");
958  }
959  if (resultVec.size() != mNumRows) {
960  OPENVDB_THROW(ArithmeticError, "matrix and result vector have incompatible sizes ("
961  << mNumRows << "x" << mNumRows << " vs. " << resultVec.size() << ")");
962  }
963 
964  vectorMultiply(inVec.data(), resultVec.data());
965 }
966 
967 
968 template<typename ValueType, SizeType STENCIL_SIZE>
969 template<typename VecValueType>
970 inline void
972  const VecValueType* inVec, VecValueType* resultVec) const
973 {
974  // Parallelize over the rows in the matrix.
975  tbb::parallel_for(SizeRange(0, mNumRows),
976  VecMultOp<VecValueType>(*this, inVec, resultVec));
977 }
978 
979 
980 template<typename ValueType, SizeType STENCIL_SIZE>
981 template<typename OtherValueType>
982 struct SparseStencilMatrix<ValueType, STENCIL_SIZE>::EqOp
983 {
984  EqOp(const SparseStencilMatrix& a_,
986  a(&a_), b(&b_), eps(e) {}
987 
988  bool operator()(const SizeRange& range, bool equal) const
989  {
990  if (equal) {
991  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
992  if (!a->getConstRow(n).eq(b->getConstRow(n), eps)) return false;
993  }
994  }
995  return equal;
996  }
997 
998  const SparseStencilMatrix* a;
1000  const ValueType eps;
1001 };
1002 
1003 
1004 template<typename ValueType, SizeType STENCIL_SIZE>
1005 template<typename OtherValueType>
1006 inline bool
1008  const SparseStencilMatrix<OtherValueType, STENCIL_SIZE>& other, ValueType eps) const
1009 {
1010  if (this->numRows() != other.numRows()) return false;
1011  bool equal = tbb::parallel_reduce(SizeRange(0, this->numRows()), /*seed=*/true,
1012  EqOp<OtherValueType>(*this, other, eps),
1013  /*join=*/[](bool eq1, bool eq2) { return (eq1 && eq2); });
1014  return equal;
1015 }
1016 
1017 
1018 template<typename ValueType, SizeType STENCIL_SIZE>
1019 struct SparseStencilMatrix<ValueType, STENCIL_SIZE>::IsFiniteOp
1020 {
1021  IsFiniteOp(const SparseStencilMatrix& m): mat(&m) {}
1022 
1023  bool operator()(const SizeRange& range, bool finite) const
1024  {
1025  if (finite) {
1026  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
1027  const ConstRow row = mat->getConstRow(n);
1028  for (ConstValueIter it = row.cbegin(); it; ++it) {
1029  if (!std::isfinite(*it)) return false;
1030  }
1031  }
1032  }
1033  return finite;
1034  }
1035 
1037 };
1038 
1039 
1040 template<typename ValueType, SizeType STENCIL_SIZE>
1041 inline bool
1043 {
1044  // Parallelize over the rows of this matrix.
1045  bool finite = tbb::parallel_reduce(SizeRange(0, this->numRows()), /*seed=*/true,
1046  IsFiniteOp(*this), /*join=*/[](bool finite1, bool finite2) { return (finite1&&finite2); });
1047  return finite;
1048 }
1049 
1050 
1051 template<typename ValueType, SizeType STENCIL_SIZE>
1052 inline std::string
1054 {
1055  std::ostringstream ostr;
1056  for (SizeType n = 0, N = this->size(); n < N; ++n) {
1057  ostr << n << ": " << this->getConstRow(n).str() << "\n";
1058  }
1059  return ostr.str();
1060 }
1061 
1062 
1063 template<typename ValueType, SizeType STENCIL_SIZE>
1066 {
1067  OPENVDB_ASSERT(i < mNumRows);
1068  const SizeType head = i * STENCIL_SIZE;
1069  return RowEditor(&mValueArray[head], &mColumnIdxArray[head], mRowSizeArray[i], mNumRows);
1070 }
1071 
1072 
1073 template<typename ValueType, SizeType STENCIL_SIZE>
1076 {
1077  OPENVDB_ASSERT(i < mNumRows);
1078  const SizeType head = i * STENCIL_SIZE; // index for this row into main storage
1079  return ConstRow(&mValueArray[head], &mColumnIdxArray[head], mRowSizeArray[i]);
1080 }
1081 
1082 
1083 template<typename ValueType, SizeType STENCIL_SIZE>
1084 template<typename DataType>
1085 inline SizeType
1087 {
1088  if (this->empty()) return mData.mSize;
1089 
1090  // Get a pointer to the first column index that is equal to or greater than the given index.
1091  // (This assumes that the data is sorted by column.)
1092  const SizeType* colPtr = std::lower_bound(mData.mCols, mData.mCols + mData.mSize, columnIdx);
1093  // Return the offset of the pointer from the beginning of the array.
1094  return static_cast<SizeType>(colPtr - mData.mCols);
1095 }
1096 
1097 
1098 template<typename ValueType, SizeType STENCIL_SIZE>
1099 template<typename DataType>
1100 inline const ValueType&
1102  SizeType columnIdx, bool& active) const
1103 {
1104  active = false;
1105  SizeType idx = this->find(columnIdx);
1106  if (idx < this->size() && this->column(idx) == columnIdx) {
1107  active = true;
1108  return this->value(idx);
1109  }
1111 }
1112 
1113 template<typename ValueType, SizeType STENCIL_SIZE>
1114 template<typename DataType>
1115 inline const ValueType&
1117 {
1118  SizeType idx = this->find(columnIdx);
1119  if (idx < this->size() && this->column(idx) == columnIdx) {
1120  return this->value(idx);
1121  }
1123 }
1124 
1125 
1126 template<typename ValueType, SizeType STENCIL_SIZE>
1127 template<typename DataType>
1130 {
1131  return ConstValueIter(mData);
1132 }
1133 
1134 
1135 template<typename ValueType, SizeType STENCIL_SIZE>
1136 template<typename DataType>
1137 template<typename OtherDataType>
1138 inline bool
1140  const RowBase<OtherDataType>& other, ValueType eps) const
1141 {
1142  if (this->size() != other.size()) return false;
1143  for (ConstValueIter it = cbegin(), oit = other.cbegin(); it || oit; ++it, ++oit) {
1144  if (it.column() != oit.column()) return false;
1145  if (!isApproxEqual(*it, *oit, eps)) return false;
1146  }
1147  return true;
1148 }
1149 
1150 
1151 template<typename ValueType, SizeType STENCIL_SIZE>
1152 template<typename DataType>
1153 template<typename VecValueType>
1154 inline VecValueType
1156  const VecValueType* inVec, SizeType vecSize) const
1157 {
1158  VecValueType result = zeroVal<VecValueType>();
1159  for (SizeType idx = 0, N = std::min(vecSize, this->size()); idx < N; ++idx) {
1160  result += static_cast<VecValueType>(this->value(idx) * inVec[this->column(idx)]);
1161  }
1162  return result;
1163 }
1164 
1165 template<typename ValueType, SizeType STENCIL_SIZE>
1166 template<typename DataType>
1167 template<typename VecValueType>
1168 inline VecValueType
1170  const Vector<VecValueType>& inVec) const
1171 {
1172  return dot(inVec.data(), inVec.size());
1173 }
1174 
1175 
1176 template<typename ValueType, SizeType STENCIL_SIZE>
1177 template<typename DataType>
1178 inline std::string
1180 {
1181  std::ostringstream ostr;
1182  std::string sep;
1183  for (SizeType n = 0, N = this->size(); n < N; ++n) {
1184  ostr << sep << "(" << this->column(n) << ", " << this->value(n) << ")";
1185  sep = ", ";
1186  }
1187  return ostr.str();
1188 }
1189 
1190 
1191 template<typename ValueType, SizeType STENCIL_SIZE>
1192 inline
1194  const ValueType* valueHead, const SizeType* columnHead, const SizeType& rowSize):
1195  ConstRowBase(ConstRowData(const_cast<ValueType*>(valueHead),
1196  const_cast<SizeType*>(columnHead), const_cast<SizeType&>(rowSize)))
1197 {
1198 }
1199 
1200 
1201 template<typename ValueType, SizeType STENCIL_SIZE>
1202 inline
1204  ValueType* valueHead, SizeType* columnHead, SizeType& rowSize, SizeType colSize):
1205  RowBase<>(RowData(valueHead, columnHead, rowSize)), mNumColumns(colSize)
1206 {
1207 }
1208 
1209 
1210 template<typename ValueType, SizeType STENCIL_SIZE>
1211 inline void
1213 {
1214  // Note: since mSize is a reference, this modifies the underlying matrix.
1215  RowBase<>::mData.mSize = 0;
1216 }
1217 
1218 
1219 template<typename ValueType, SizeType STENCIL_SIZE>
1220 inline SizeType
1222  SizeType column, const ValueType& value)
1223 {
1224  OPENVDB_ASSERT(column < mNumColumns);
1225 
1226  RowData& data = RowBase<>::mData;
1227 
1228  // Get the offset of the first column index that is equal to or greater than
1229  // the column to be modified.
1230  SizeType offset = this->find(column);
1231 
1232  if (offset < data.mSize && data.mCols[offset] == column) {
1233  // If the column already exists, just update its value.
1234  data.mVals[offset] = value;
1235  return data.mSize;
1236  }
1237 
1238  // Check that it is safe to add a new column.
1239  OPENVDB_ASSERT(data.mSize < this->capacity());
1240 
1241  if (offset >= data.mSize) {
1242  // The new column's index is larger than any existing index. Append the new column.
1243  data.mVals[data.mSize] = value;
1244  data.mCols[data.mSize] = column;
1245  } else {
1246  // Insert the new column at the computed offset after shifting subsequent columns.
1247  for (SizeType i = data.mSize; i > offset; --i) {
1248  data.mVals[i] = data.mVals[i - 1];
1249  data.mCols[i] = data.mCols[i - 1];
1250  }
1251  data.mVals[offset] = value;
1252  data.mCols[offset] = column;
1253  }
1254  ++data.mSize;
1255 
1256  return data.mSize;
1257 }
1258 
1259 
1260 template<typename ValueType, SizeType STENCIL_SIZE>
1261 template<typename Scalar>
1262 inline void
1264 {
1265  for (int idx = 0, N = this->size(); idx < N; ++idx) {
1266  RowBase<>::mData.mVals[idx] *= s;
1267  }
1268 }
1269 
1270 
1271 ////////////////////////////////////////
1272 
1273 
1274 /// Diagonal preconditioner
1275 template<typename MatrixType>
1276 class JacobiPreconditioner: public Preconditioner<typename MatrixType::ValueType>
1277 {
1278 private:
1279  struct InitOp;
1280  struct ApplyOp;
1281 
1282 public:
1283  using ValueType = typename MatrixType::ValueType;
1287 
1288  JacobiPreconditioner(const MatrixType& A): BaseType(A), mDiag(A.numRows())
1289  {
1290  // Initialize vector mDiag with the values from the matrix diagonal.
1291  tbb::parallel_for(SizeRange(0, A.numRows()), InitOp(A, mDiag.data()));
1292  }
1293 
1294  ~JacobiPreconditioner() override = default;
1295 
1296  void apply(const Vector<ValueType>& r, Vector<ValueType>& z) override
1297  {
1298  const SizeType size = mDiag.size();
1299 
1300  OPENVDB_ASSERT(r.size() == z.size());
1301  OPENVDB_ASSERT(r.size() == size);
1302 
1303  tbb::parallel_for(SizeRange(0, size), ApplyOp(mDiag.data(), r.data(), z.data()));
1304  }
1305 
1306  /// Return @c true if all values along the diagonal are finite.
1307  bool isFinite() const { return mDiag.isFinite(); }
1308 
1309 private:
1310  // Functor for use with tbb::parallel_for()
1311  struct InitOp
1312  {
1313  InitOp(const MatrixType& m, ValueType* v): mat(&m), vec(v) {}
1314  void operator()(const SizeRange& range) const {
1315  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
1316  const ValueType val = mat->getValue(n, n);
1317  OPENVDB_ASSERT(!isApproxZero(val, ValueType(0.0001)));
1318  vec[n] = static_cast<ValueType>(1.0 / val);
1319  }
1320  }
1321  const MatrixType* mat; ValueType* vec;
1322  };
1323 
1324  // Functor for use with tbb::parallel_reduce()
1325  struct ApplyOp
1326  {
1327  ApplyOp(const ValueType* x_, const ValueType* y_, ValueType* out_):
1328  x(x_), y(y_), out(out_) {}
1329  void operator()(const SizeRange& range) const {
1330  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) out[n] = x[n] * y[n];
1331  }
1332  const ValueType *x, *y; ValueType* out;
1333  };
1334 
1335  // The Jacobi preconditioner is a diagonal matrix
1336  VectorType mDiag;
1337 }; // class JacobiPreconditioner
1338 
1339 
1340 /// Preconditioner using incomplete Cholesky factorization
1341 template<typename MatrixType>
1342 class IncompleteCholeskyPreconditioner: public Preconditioner<typename MatrixType::ValueType>
1343 {
1344 private:
1345  struct CopyToLowerOp;
1346  struct TransposeOp;
1347 
1348 public:
1349  using ValueType = typename MatrixType::ValueType;
1354  using TriangleConstRow = typename TriangularMatrix::ConstRow;
1355  using TriangleRowEditor = typename TriangularMatrix::RowEditor;
1356 
1357  IncompleteCholeskyPreconditioner(const MatrixType& matrix)
1358  : BaseType(matrix)
1359  , mLowerTriangular(matrix.numRows())
1360  , mUpperTriangular(matrix.numRows())
1361  , mTempVec(matrix.numRows())
1362  {
1363  // Size of matrix
1364  const SizeType numRows = mLowerTriangular.numRows();
1365 
1366  // Copy the upper triangular part to the lower triangular part.
1367  tbb::parallel_for(SizeRange(0, numRows), CopyToLowerOp(matrix, mLowerTriangular));
1368 
1369  // Build the Incomplete Cholesky Matrix
1370  //
1371  // Algorithm:
1372  //
1373  // for (k = 0; k < size; ++k) {
1374  // A(k,k) = sqrt(A(k,k));
1375  // for (i = k +1, i < size; ++i) {
1376  // if (A(i,k) == 0) continue;
1377  // A(i,k) = A(i,k) / A(k,k);
1378  // }
1379  // for (j = k+1; j < size; ++j) {
1380  // for (i = j; i < size; ++i) {
1381  // if (A(i,j) == 0) continue;
1382  // A(i,j) -= A(i,k)*A(j,k);
1383  // }
1384  // }
1385  // }
1386 
1387  mPassedCompatibilityCondition = true;
1388 
1389  for (SizeType k = 0; k < numRows; ++k) {
1390 
1391  TriangleConstRow crow_k = mLowerTriangular.getConstRow(k);
1392  ValueType diagonalValue = crow_k.getValue(k);
1393 
1394  // Test if the matrix build has failed.
1395  if (diagonalValue < 1.e-5) {
1396  mPassedCompatibilityCondition = false;
1397  break;
1398  }
1399 
1400  diagonalValue = Sqrt(diagonalValue);
1401 
1402  TriangleRowEditor row_k = mLowerTriangular.getRowEditor(k);
1403  row_k.setValue(k, diagonalValue);
1404 
1405  // Exploit the fact that the matrix is symmetric.
1406  typename MatrixType::ConstRow srcRow = matrix.getConstRow(k);
1407  typename MatrixType::ConstValueIter citer = srcRow.cbegin();
1408  for ( ; citer; ++citer) {
1409  SizeType ii = citer.column();
1410  if (ii < k+1) continue; // look above diagonal
1411 
1412  TriangleRowEditor row_ii = mLowerTriangular.getRowEditor(ii);
1413 
1414  row_ii.setValue(k, *citer / diagonalValue);
1415  }
1416 
1417  // for (j = k+1; j < size; ++j) replaced by row iter below
1418  citer.reset(); // k,j entries
1419  for ( ; citer; ++citer) {
1420  SizeType j = citer.column();
1421  if (j < k+1) continue;
1422 
1423  TriangleConstRow row_j = mLowerTriangular.getConstRow(j);
1424  ValueType a_jk = row_j.getValue(k); // a_jk is non zero if a_kj is non zero
1425 
1426  // Entry (i,j) is non-zero if matrix(j,i) is nonzero
1427 
1428  typename MatrixType::ConstRow mask = matrix.getConstRow(j);
1429  typename MatrixType::ConstValueIter maskIter = mask.cbegin();
1430  for ( ; maskIter; ++maskIter) {
1431  SizeType i = maskIter.column();
1432  if (i < j) continue;
1433 
1434  TriangleConstRow crow_i = mLowerTriangular.getConstRow(i);
1435  ValueType a_ij = crow_i.getValue(j);
1436  ValueType a_ik = crow_i.getValue(k);
1437  TriangleRowEditor row_i = mLowerTriangular.getRowEditor(i);
1438  a_ij -= a_ik * a_jk;
1439 
1440  row_i.setValue(j, a_ij);
1441  }
1442  }
1443  }
1444 
1445  // Build the transpose of the IC matrix: mUpperTriangular
1446  tbb::parallel_for(SizeRange(0, numRows),
1447  TransposeOp(matrix, mLowerTriangular, mUpperTriangular));
1448  }
1449 
1450  ~IncompleteCholeskyPreconditioner() override = default;
1451 
1452  bool isValid() const override { return mPassedCompatibilityCondition; }
1453 
1454  void apply(const Vector<ValueType>& rVec, Vector<ValueType>& zVec) override
1455  {
1456  if (!mPassedCompatibilityCondition) {
1457  OPENVDB_THROW(ArithmeticError, "invalid Cholesky decomposition");
1458  }
1459 
1460  // Solve mUpperTriangular * mLowerTriangular * rVec = zVec;
1461 
1462  SizeType size = mLowerTriangular.numRows();
1463 
1464  zVec.fill(zeroVal<ValueType>());
1465  ValueType* zData = zVec.data();
1466 
1467  if (size == 0) return;
1468 
1469  OPENVDB_ASSERT(rVec.size() == size);
1470  OPENVDB_ASSERT(zVec.size() == size);
1471 
1472  // Allocate a temp vector
1473  mTempVec.fill(zeroVal<ValueType>());
1474  ValueType* tmpData = mTempVec.data();
1475  const ValueType* rData = rVec.data();
1476 
1477  // Solve mLowerTriangular * tmp = rVec;
1478  for (SizeType i = 0; i < size; ++i) {
1479  typename TriangularMatrix::ConstRow row = mLowerTriangular.getConstRow(i);
1480  ValueType diagonal = row.getValue(i);
1481  ValueType dot = row.dot(mTempVec);
1482  tmpData[i] = (rData[i] - dot) / diagonal;
1483  if (!std::isfinite(tmpData[i])) {
1484  OPENVDB_LOG_DEBUG_RUNTIME("1 diagonal was " << diagonal);
1485  OPENVDB_LOG_DEBUG_RUNTIME("1a diagonal " << row.getValue(i));
1486  }
1487  }
1488 
1489  // Solve mUpperTriangular * zVec = tmp;
1490  for (SizeType ii = 0; ii < size; ++ii) {
1491  SizeType i = size - 1 - ii;
1492  typename TriangularMatrix::ConstRow row = mUpperTriangular.getConstRow(i);
1493  ValueType diagonal = row.getValue(i);
1494  ValueType dot = row.dot(zVec);
1495  zData[i] = (tmpData[i] - dot) / diagonal;
1496  if (!std::isfinite(zData[i])) {
1497  OPENVDB_LOG_DEBUG_RUNTIME("2 diagonal was " << diagonal);
1498  }
1499  }
1500  }
1501 
1502  const TriangularMatrix& lowerMatrix() const { return mLowerTriangular; }
1503  const TriangularMatrix& upperMatrix() const { return mUpperTriangular; }
1504 
1505 private:
1506  // Functor for use with tbb::parallel_for()
1507  struct CopyToLowerOp
1508  {
1509  CopyToLowerOp(const MatrixType& m, TriangularMatrix& l): mat(&m), lower(&l) {}
1510  void operator()(const SizeRange& range) const {
1511  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
1512  typename TriangularMatrix::RowEditor outRow = lower->getRowEditor(n);
1513  outRow.clear();
1514  typename MatrixType::ConstRow inRow = mat->getConstRow(n);
1515  for (typename MatrixType::ConstValueIter it = inRow.cbegin(); it; ++it) {
1516  if (it.column() > n) continue; // skip above diagonal
1517  outRow.setValue(it.column(), *it);
1518  }
1519  }
1520  }
1521  const MatrixType* mat; TriangularMatrix* lower;
1522  };
1523 
1524  // Functor for use with tbb::parallel_for()
1525  struct TransposeOp
1526  {
1527  TransposeOp(const MatrixType& m, const TriangularMatrix& l, TriangularMatrix& u):
1528  mat(&m), lower(&l), upper(&u) {}
1529  void operator()(const SizeRange& range) const {
1530  for (SizeType n = range.begin(), N = range.end(); n < N; ++n) {
1531  typename TriangularMatrix::RowEditor outRow = upper->getRowEditor(n);
1532  outRow.clear();
1533  // Use the fact that matrix is symmetric.
1534  typename MatrixType::ConstRow inRow = mat->getConstRow(n);
1535  for (typename MatrixType::ConstValueIter it = inRow.cbegin(); it; ++it) {
1536  const SizeType column = it.column();
1537  if (column < n) continue; // only set upper triangle
1538  outRow.setValue(column, lower->getValue(column, n));
1539  }
1540  }
1541  }
1542  const MatrixType* mat; const TriangularMatrix* lower; TriangularMatrix* upper;
1543  };
1544 
1545  TriangularMatrix mLowerTriangular;
1546  TriangularMatrix mUpperTriangular;
1547  Vector<ValueType> mTempVec;
1548  bool mPassedCompatibilityCondition;
1549 }; // class IncompleteCholeskyPreconditioner
1550 
1551 
1552 ////////////////////////////////////////
1553 
1554 
1555 namespace internal {
1556 
1557 /// Compute @e ax + @e y.
1558 template<typename T>
1559 inline void
1560 axpy(const T& a, const T* xVec, const T* yVec, T* resultVec, SizeType size)
1561 {
1562  tbb::parallel_for(SizeRange(0, size), LinearOp<T>(a, xVec, yVec, resultVec));
1563 }
1564 
1565 /// Compute @e ax + @e y.
1566 template<typename T>
1567 inline void
1568 axpy(const T& a, const Vector<T>& xVec, const Vector<T>& yVec, Vector<T>& result)
1569 {
1570  OPENVDB_ASSERT(xVec.size() == yVec.size());
1571  OPENVDB_ASSERT(xVec.size() == result.size());
1572  axpy(a, xVec.data(), yVec.data(), result.data(), xVec.size());
1573 }
1574 
1575 
1576 /// Compute @e r = @e b &minus; @e Ax.
1577 template<typename MatrixOperator, typename VecValueType>
1578 inline void
1579 computeResidual(const MatrixOperator& A, const VecValueType* x,
1580  const VecValueType* b, VecValueType* r)
1581 {
1582  // Compute r = A * x.
1583  A.vectorMultiply(x, r);
1584  // Compute r = b - r.
1585  tbb::parallel_for(SizeRange(0, A.numRows()), LinearOp<VecValueType>(-1.0, r, b, r));
1586 }
1587 
1588 /// Compute @e r = @e b &minus; @e Ax.
1589 template<typename MatrixOperator, typename T>
1590 inline void
1591 computeResidual(const MatrixOperator& A, const Vector<T>& x, const Vector<T>& b, Vector<T>& r)
1592 {
1593  OPENVDB_ASSERT(x.size() == b.size());
1594  OPENVDB_ASSERT(x.size() == r.size());
1595  OPENVDB_ASSERT(x.size() == A.numRows());
1596 
1597  computeResidual(A, x.data(), b.data(), r.data());
1598 }
1599 
1600 } // namespace internal
1601 
1602 
1603 ////////////////////////////////////////
1604 
1605 
1606 template<typename PositiveDefMatrix>
1607 inline State
1609  const PositiveDefMatrix& Amat,
1613  const State& termination)
1614 {
1615  util::NullInterrupter interrupter;
1616  return solve(Amat, bVec, xVec, precond, interrupter, termination);
1617 }
1618 
1619 
1620 template<typename PositiveDefMatrix, typename Interrupter>
1621 inline State
1623  const PositiveDefMatrix& Amat,
1627  Interrupter& interrupter,
1628  const State& termination)
1629 {
1630  using ValueType = typename PositiveDefMatrix::ValueType;
1631  using VectorType = Vector<ValueType>;
1632 
1633  State result;
1634  result.success = false;
1635  result.iterations = 0;
1636  result.relativeError = 0.0;
1637  result.absoluteError = 0.0;
1638 
1639  const SizeType size = Amat.numRows();
1640  if (size == 0) {
1641  OPENVDB_LOG_WARN("pcg::solve(): matrix has dimension zero");
1642  return result;
1643  }
1644  if (size != bVec.size()) {
1645  OPENVDB_THROW(ArithmeticError, "A and b have incompatible sizes"
1646  << size << "x" << size << " vs. " << bVec.size() << ")");
1647  }
1648  if (size != xVec.size()) {
1649  OPENVDB_THROW(ArithmeticError, "A and x have incompatible sizes"
1650  << size << "x" << size << " vs. " << xVec.size() << ")");
1651  }
1652 
1653  // Temp vectors
1654  VectorType zVec(size); // transformed residual (M^-1 r)
1655  VectorType pVec(size); // search direction
1656  VectorType qVec(size); // A * p
1657 
1658  // Compute norm of B (the source)
1659  const ValueType tmp = bVec.infNorm();
1660  const ValueType infNormOfB = isZero(tmp) ? ValueType(1) : tmp;
1661 
1662  // Compute rVec: residual = b - Ax.
1663  VectorType rVec(size); // vector of residuals
1664 
1665  internal::computeResidual(Amat, xVec, bVec, rVec);
1666 
1667  OPENVDB_ASSERT(rVec.isFinite());
1668 
1669  // Normalize the residual norm with the source norm and look for early out.
1670  result.absoluteError = static_cast<double>(rVec.infNorm());
1671  result.relativeError = static_cast<double>(result.absoluteError / infNormOfB);
1672  if (result.relativeError <= termination.relativeError) {
1673  result.success = true;
1674  return result;
1675  }
1676 
1677  // Iterations of the CG solve
1678 
1679  ValueType rDotZPrev(1); // inner product of <z,r>
1680 
1681  // Keep track of the minimum error to monitor convergence.
1682  ValueType minL2Error = std::numeric_limits<ValueType>::max();
1683  ValueType l2Error;
1684 
1685  int iteration = 0;
1686  for ( ; iteration < termination.iterations; ++iteration) {
1687 
1688  if (interrupter.wasInterrupted()) {
1689  OPENVDB_THROW(RuntimeError, "conjugate gradient solver was interrupted");
1690  }
1691 
1692  OPENVDB_LOG_DEBUG_RUNTIME("pcg::solve() " << result);
1693 
1694  result.iterations = iteration + 1;
1695 
1696  // Apply preconditioner to residual
1697  // z_{k} = M^-1 r_{k}
1698  precond.apply(rVec, zVec);
1699 
1700  // <r,z>
1701  const ValueType rDotZ = rVec.dot(zVec);
1702  OPENVDB_ASSERT(std::isfinite(rDotZ));
1703 
1704  if (0 == iteration) {
1705  // Initialize
1706  pVec = zVec;
1707  } else {
1708  const ValueType beta = rDotZ / rDotZPrev;
1709  // p = beta * p + z
1710  internal::axpy(beta, pVec, zVec, /*result */pVec);
1711  }
1712 
1713  // q_{k} = A p_{k}
1714  Amat.vectorMultiply(pVec, qVec);
1715 
1716  // alpha = <r_{k-1}, z_{k-1}> / <p_{k},q_{k}>
1717  const ValueType pAp = pVec.dot(qVec);
1718  OPENVDB_ASSERT(std::isfinite(pAp));
1719 
1720  const ValueType alpha = rDotZ / pAp;
1721  rDotZPrev = rDotZ;
1722 
1723  // x_{k} = x_{k-1} + alpha * p_{k}
1724  internal::axpy(alpha, pVec, xVec, /*result=*/xVec);
1725 
1726  // r_{k} = r_{k-1} - alpha_{k-1} A p_{k}
1727  internal::axpy(-alpha, qVec, rVec, /*result=*/rVec);
1728 
1729  // update tolerances
1730  l2Error = rVec.l2Norm();
1731  minL2Error = Min(l2Error, minL2Error);
1732 
1733  result.absoluteError = static_cast<double>(rVec.infNorm());
1734  result.relativeError = static_cast<double>(result.absoluteError / infNormOfB);
1735 
1736  if (l2Error > 2 * minL2Error) {
1737  // The solution started to diverge.
1738  result.success = false;
1739  break;
1740  }
1741  if (!std::isfinite(result.absoluteError)) {
1742  // Total divergence of solution
1743  result.success = false;
1744  break;
1745  }
1746  if (result.absoluteError <= termination.absoluteError) {
1747  // Convergence
1748  result.success = true;
1749  break;
1750  }
1751  if (result.relativeError <= termination.relativeError) {
1752  // Convergence
1753  result.success = true;
1754  break;
1755  }
1756  }
1757  OPENVDB_LOG_DEBUG_RUNTIME("pcg::solve() " << result);
1758 
1759  return result;
1760 }
1761 
1762 } // namespace pcg
1763 } // namespace math
1764 } // namespace OPENVDB_VERSION_NAME
1765 } // namespace openvdb
1766 
1767 #endif // OPENVDB_MATH_CONJGRADIENT_HAS_BEEN_INCLUDED
bool isExactlyEqual(const T0 &a, const T1 &b)
Return true if a is exactly equal to b.
Definition: Math.h:443
SparseStencilMatrix(SizeType n)
Construct an n x n matrix with at most STENCIL_SIZE nonzero elements per row.
Definition: ConjGradient.h:819
ValueType l2Norm() const
Return the L2 norm of this vector.
Definition: ConjGradient.h:185
void computeResidual(const MatrixOperator &A, const Vector< T > &x, const Vector< T > &b, Vector< T > &r)
Compute r = b − Ax.
Definition: ConjGradient.h:1591
bool operator()(const SizeRange &range, bool finite) const
Definition: ConjGradient.h:737
SizeType column() const
Definition: ConjGradient.h:392
MatrixType::ValueType ValueType
Definition: ConjGradient.h:467
SharedPtr< Preconditioner > Ptr
Definition: ConjGradient.h:468
Vector(SizeType n)
Construct a vector of n elements, with uninitialized values.
Definition: ConjGradient.h:147
IsFiniteOp(const SparseStencilMatrix &m)
Definition: ConjGradient.h:1021
static constexpr ValueType sZeroValue
Definition: ConjGradient.h:248
void clear()
Set the number of entries in this row to zero.
Definition: ConjGradient.h:1212
SharedPtr< Vector > Ptr
Definition: ConjGradient.h:142
bool isFinite() const
Return true if every element of this matrix has a finite value.
Definition: ConjGradient.h:1042
Tolerance for floating-point comparison.
Definition: Math.h:148
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:74
Coord Abs(const Coord &xyz)
Definition: Coord.h:518
Iterator over the stored values in a row of this matrix.
Definition: ConjGradient.h:383
std::ostream & operator<<(std::ostream &os, const State &state)
Definition: ConjGradient.h:545
RowEditor getRowEditor(SizeType row)
Return a read/write view onto the given row of this matrix.
Definition: ConjGradient.h:1065
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
void resize(SizeType n)
Reset this vector to have n elements, with uninitialized values.
Definition: ConjGradient.h:588
bool eq(const Vector< OtherValueType > &other, ValueType eps=Tolerance< ValueType >::value()) const
Return true if this vector is equivalent to the given vector to within the specified tolerance...
Definition: ConjGradient.h:788
#define OPENVDB_LOG_DEBUG_RUNTIME(message)
Log a debugging message in both debug and optimized builds.
Definition: logging.h:270
void setValue(SizeType row, SizeType col, const ValueType &)
Set the value at the given coordinates.
Definition: ConjGradient.h:874
RowEditor(ValueType *valueHead, SizeType *columnHead, SizeType &rowSize, SizeType colSize)
Definition: ConjGradient.h:1203
void axpy(const T &a, const T *xVec, const T *yVec, T *resultVec, SizeType size)
Compute ax + y.
Definition: ConjGradient.h:1560
const T * data
Definition: ConjGradient.h:717
void vectorMultiply(const Vector< VecValueType > &inVec, Vector< VecValueType > &resultVec) const
Multiply this matrix by inVec and return the result in resultVec.
Definition: ConjGradient.h:952
SparseStencilMatrix & operator*=(const Scalar &s)
Multiply all elements in the matrix by s;.
Definition: ConjGradient.h:285
Sparse, square matrix representing a 3D stencil operator of size STENCIL_SIZE.
Definition: ConjGradient.h:39
const T * from
Definition: ConjGradient.h:498
MatrixCopyOp(const SparseStencilMatrix &from_, SparseStencilMatrix &to_)
Definition: ConjGradient.h:834
ValueType ValueType
Definition: ConjGradient.h:141
double relativeError
Definition: ConjGradient.h:49
SizeType size() const
Return the number of elements in this vector.
Definition: ConjGradient.h:159
const T val
Definition: ConjGradient.h:514
SizeType setValue(SizeType column, const ValueType &value)
Set the value of the entry in the specified column.
Definition: ConjGradient.h:1221
bool isApproxEqual(const Type &a, const Type &b, const Type &tolerance)
Return true if a is equal to b to within the given tolerance.
Definition: Math.h:406
int iterations
Definition: ConjGradient.h:48
const ValueType & getValue(SizeType row, SizeType col) const
Return the value at the given coordinates.
Definition: ConjGradient.h:884
tbb::blocked_range< SizeType > SizeRange
Definition: ConjGradient.h:35
Lightweight, variable-length vector.
Definition: ConjGradient.h:37
void scale(const Scalar &s)
Multiply all elements in the matrix by s;.
Definition: ConjGradient.h:921
Information about the state of a conjugate gradient solution.
Definition: ConjGradient.h:46
const Type & Max(const Type &a, const Type &b)
Return the maximum of two values.
Definition: Math.h:595
bool isFinite(const float x)
Return true if x is finite.
Definition: Math.h:375
ConstValueIter & operator++()
Definition: ConjGradient.h:395
Definition: ConjGradient.h:733
SizeType numRows() const
Return the number of rows in this matrix.
Definition: ConjGradient.h:258
bool empty() const
Return true if this vector has no elements.
Definition: ConjGradient.h:161
const Type & Min(const Type &a, const Type &b)
Return the minimum of two values.
Definition: Math.h:656
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:110
Base class for interrupters.
Definition: NullInterrupter.h:25
ValueType infNorm() const
Return the infinity norm of this vector.
Definition: ConjGradient.h:723
State solve(const PositiveDefMatrix &A, const Vector< typename PositiveDefMatrix::ValueType > &b, Vector< typename PositiveDefMatrix::ValueType > &x, Preconditioner< typename PositiveDefMatrix::ValueType > &preconditioner, const State &termination=terminationDefaults< typename PositiveDefMatrix::ValueType >())
Solve Ax = b via the preconditioned conjugate gradient method.
Definition: ConjGradient.h:1608
State solve(const PositiveDefMatrix &A, const Vector< typename PositiveDefMatrix::ValueType > &b, Vector< typename PositiveDefMatrix::ValueType > &x, Preconditioner< typename PositiveDefMatrix::ValueType > &preconditioner, Interrupter &interrupter, const State &termination=terminationDefaults< typename PositiveDefMatrix::ValueType >())
Solve Ax = b via the preconditioned conjugate gradient method.
Definition: ConjGradient.h:1622
std::string str() const
Return a string representation of this matrix.
Definition: ConjGradient.h:1053
const T * data() const
Return a pointer to this vector&#39;s elements.
Definition: ConjGradient.h:210
Vector()
Construct an empty vector.
Definition: ConjGradient.h:145
std::string str() const
Return a string representation of this vector.
Definition: ConjGradient.h:800
bool operator()(const SizeRange &range, bool finite) const
Definition: ConjGradient.h:1023
SparseStencilMatrix * to
Definition: ConjGradient.h:849
virtual void apply(const Vector< T > &r, Vector< T > &z)=0
Apply this preconditioner to a residue vector: z = M−1r
Vector & operator*=(const Scalar &s)
Multiply each element of this vector by s.
Definition: ConjGradient.h:176
void apply(const Vector< ValueType > &r, Vector< ValueType > &z) override
Apply this preconditioner to a residue vector: z = M−1r
Definition: ConjGradient.h:1296
Vector< ValueType > VectorType
Definition: ConjGradient.h:241
IsFiniteOp(const T *data_)
Definition: ConjGradient.h:735
SharedPtr< IncompleteCholeskyPreconditioner > Ptr
Definition: ConjGradient.h:1352
const ValueType & operator()(SizeType row, SizeType col) const
Return the value at the given coordinates.
Definition: ConjGradient.h:893
bool isApproxZero(const Type &x)
Return true if x is equal to zero to within the default floating-point comparison tolerance...
Definition: Math.h:349
const SizeType binCount
Definition: ConjGradient.h:657
Read/write accessor to a row of this matrix.
Definition: ConjGradient.h:419
Preconditioner using incomplete Cholesky factorization.
Definition: ConjGradient.h:43
SharedPtr< SparseStencilMatrix > Ptr
Definition: ConjGradient.h:242
const T * y
Definition: ConjGradient.h:534
std::shared_ptr< T > SharedPtr
Definition: Types.h:114
void operator()(const SizeRange &range) const
Definition: ConjGradient.h:837
void swap(Vector &other)
Swap internal storage with another vector, which need not be the same size.
Definition: ConjGradient.h:168
ValueType dot(const Vector &) const
Return the dot product of this vector with the given vector, which must be the same size...
Definition: ConjGradient.h:664
bool isZero(const Type &x)
Return true if x is exactly equal to zero.
Definition: Math.h:337
#define OPENVDB_ASSERT(X)
Definition: Assert.h:41
SharedPtr< JacobiPreconditioner > Ptr
Definition: ConjGradient.h:1286
T operator()(const SizeRange &range, T maxValue) const
Definition: ConjGradient.h:709
Index32 SizeType
Definition: ConjGradient.h:33
MatType scale(const Vec3< typename MatType::value_type > &s)
Return a matrix that scales by s.
Definition: Mat.h:615
Definition: ConjGradient.h:505
InfNormOp(const T *data_)
Definition: ConjGradient.h:707
~Vector()
Definition: ConjGradient.h:151
bool eq(const SparseStencilMatrix< OtherValueType, STENCIL_SIZE > &other, ValueType eps=Tolerance< ValueType >::value()) const
Return true if this matrix is equivalent to the given matrix to within the specified tolerance...
Definition: ConjGradient.h:1007
Base class for conjugate gradient preconditioners.
Definition: ConjGradient.h:41
void axpy(const T &a, const Vector< T > &xVec, const Vector< T > &yVec, Vector< T > &result)
Compute ax + y.
Definition: ConjGradient.h:1568
FillOp(T *data_, const T &val_)
Definition: ConjGradient.h:507
RowEditor & operator*=(const Scalar &s)
Scale all of the entries in this row.
Definition: ConjGradient.h:435
void apply(const Vector< ValueType > &rVec, Vector< ValueType > &zVec) override
Apply this preconditioner to a residue vector: z = M−1r
Definition: ConjGradient.h:1454
bool empty(const char *str)
tests if a c-string str is empty, that is its first value is &#39;\0&#39;
Definition: Util.h:144
CopyOp(const T *from_, T *to_)
Definition: ConjGradient.h:492
ConstRow(const ValueType *valueHead, const SizeType *columnHead, const SizeType &rowSize)
Definition: ConjGradient.h:1193
Definition: Exceptions.h:13
Vector & operator=(const Vector &)
Deep copy the given vector.
Definition: ConjGradient.h:568
Preconditioner(const SparseStencilMatrix< T, STENCIL_SIZE > &)
Definition: ConjGradient.h:470
void computeResidual(const MatrixOperator &A, const VecValueType *x, const VecValueType *b, VecValueType *r)
Compute r = b − Ax.
Definition: ConjGradient.h:1579
const TriangularMatrix & upperMatrix() const
Definition: ConjGradient.h:1503
bool success
Definition: ConjGradient.h:47
State terminationDefaults()
Return default termination conditions for a conjugate gradient solver.
Definition: ConjGradient.h:57
Definition: ConjGradient.h:490
Read-only accessor to a row of this matrix.
Definition: ConjGradient.h:411
IncompleteCholeskyPreconditioner(const MatrixType &matrix)
Definition: ConjGradient.h:1357
const T & at(SizeType i) const
Return the value of this vector&#39;s ith element.
Definition: ConjGradient.h:202
OutGridT const XformOp bool bool
Definition: ValueTransformer.h:609
void operator()(const SizeRange &range) const
Definition: ConjGradient.h:509
JacobiPreconditioner(const MatrixType &A)
Definition: ConjGradient.h:1288
virtual bool isValid() const
Definition: ConjGradient.h:473
bool isFinite() const
Return true if every element of this vector has a finite value.
Definition: ConjGradient.h:753
const SparseStencilMatrix * mat
Definition: ConjGradient.h:1036
ConstRow getConstRow(SizeType row) const
Return a read-only view onto the given row of this matrix.
Definition: ConjGradient.h:1075
DeterministicDotProductOp(const T *a_, const T *b_, const SizeType binCount_, const SizeType arraySize_, T *reducetmp_)
Definition: ConjGradient.h:633
uint32_t Index32
Definition: Types.h:52
double absoluteError
Definition: ConjGradient.h:50
const TriangularMatrix & lowerMatrix() const
Definition: ConjGradient.h:1502
void fill(const ValueType &value)
Set all elements of this vector to value.
Definition: ConjGradient.h:600
T * data()
Return a pointer to this vector&#39;s elements.
Definition: ConjGradient.h:209
Definition: Exceptions.h:56
T * out
Definition: ConjGradient.h:535
#define OPENVDB_LOG_WARN(message)
Log a warning message of the form &#39;someVar << "some text" << ...&#39;.
Definition: logging.h:256
void scale(const Scalar &)
Scale all of the entries in this row.
Definition: ConjGradient.h:1263
const T * constData() const
Return a pointer to this vector&#39;s elements.
Definition: ConjGradient.h:211
bool isValid() const override
Definition: ConjGradient.h:1452
SizeType size() const
Return the number of rows in this matrix.
Definition: ConjGradient.h:259
const SizeType arraySize
Definition: ConjGradient.h:658
const T & operator[](SizeType i) const
Return the value of this vector&#39;s ith element.
Definition: ConjGradient.h:204
Definition: ConjGradient.h:520
T & at(SizeType i)
Return the value of this vector&#39;s ith element.
Definition: ConjGradient.h:201
Definition: ConjGradient.h:705
const std::enable_if<!VecTraits< T >::IsVec, T >::type & min(const T &a, const T &b)
Definition: Composite.h:106
void operator()(const SizeRange &range) const
Definition: ConjGradient.h:524
void operator()(const SizeRange &range) const
Definition: ConjGradient.h:494
LinearOp(const T &a_, const T *x_, const T *y_, T *out_)
Definition: ConjGradient.h:522
void scale(const Scalar &s)
Multiply each element of this vector by s.
Definition: ConjGradient.h:624
Diagonal preconditioner.
Definition: ConjGradient.h:42
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:121
typename TriangularMatrix::ConstRow TriangleConstRow
Definition: ConjGradient.h:1354
T & operator[](SizeType i)
Return the value of this vector&#39;s ith element.
Definition: ConjGradient.h:203
T * data
Definition: ConjGradient.h:513
const ValueType & operator*() const
Definition: ConjGradient.h:386
void operator()(const SizeRange &range) const
Definition: ConjGradient.h:637
Vector(SizeType n, const ValueType &val)
Construct a vector of n elements and initialize each element to the given value.
Definition: ConjGradient.h:149
float Sqrt(float x)
Return the square root of a floating-point value.
Definition: Math.h:761
bool isFinite() const
Return true if all values along the diagonal are finite.
Definition: ConjGradient.h:1307
const T * data
Definition: ConjGradient.h:747
typename TriangularMatrix::RowEditor TriangleRowEditor
Definition: ConjGradient.h:1355
T * to
Definition: ConjGradient.h:499
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:218
Definition: Exceptions.h:63