Line | Branch | Exec | Source |
---|---|---|---|
1 | // Copyright Contributors to the OpenVDB Project | ||
2 | // SPDX-License-Identifier: MPL-2.0 | ||
3 | // | ||
4 | /// @file MapsUtil.h | ||
5 | |||
6 | #ifndef OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED | ||
7 | #define OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED | ||
8 | |||
9 | #include <openvdb/math/Maps.h> | ||
10 | #include <algorithm> // for std::min(), std::max() | ||
11 | #include <cmath> | ||
12 | #include <vector> | ||
13 | |||
14 | |||
15 | namespace openvdb { | ||
16 | OPENVDB_USE_VERSION_NAMESPACE | ||
17 | namespace OPENVDB_VERSION_NAME { | ||
18 | namespace util { | ||
19 | |||
20 | // Utility methods for calculating bounding boxes | ||
21 | |||
22 | /// @brief Calculate an axis-aligned bounding box in the given map's domain | ||
23 | /// (e.g., index space) from an axis-aligned bounding box in its range | ||
24 | /// (e.g., world space) | ||
25 | template<typename MapType> | ||
26 | inline void | ||
27 | 4 | calculateBounds(const MapType& map, const BBoxd& in, BBoxd& out) | |
28 | { | ||
29 | const Vec3d& min = in.min(); | ||
30 | const Vec3d& max = in.max(); | ||
31 | |||
32 | // the pre-image of the 8 corners of the box | ||
33 |
2/2✓ Branch 0 taken 16 times.
✓ Branch 1 taken 2 times.
|
36 | Vec3d corners[8]; |
34 | 4 | corners[0] = in.min();; | |
35 | 4 | corners[1] = Vec3d(min(0), min(1), min(2)); | |
36 | 4 | corners[2] = Vec3d(max(0), max(1), min(2)); | |
37 | 4 | corners[3] = Vec3d(min(0), max(1), min(2)); | |
38 | 4 | corners[4] = Vec3d(min(0), min(1), max(2)); | |
39 | 4 | corners[5] = Vec3d(max(0), min(1), max(2)); | |
40 | 4 | corners[6] = max; | |
41 | 4 | corners[7] = Vec3d(min(0), max(1), max(2)); | |
42 | |||
43 | Vec3d pre_image; | ||
44 | Vec3d& out_min = out.min(); | ||
45 | Vec3d& out_max = out.max(); | ||
46 | 4 | out_min = map.applyInverseMap(corners[0]); | |
47 | 4 | out_max = min; | |
48 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 2 times.
|
32 | for (int i = 1; i < 8; ++i) { |
49 | 28 | pre_image = map.applyInverseMap(corners[i]); | |
50 |
2/2✓ Branch 0 taken 42 times.
✓ Branch 1 taken 14 times.
|
112 | for (int j = 0; j < 3; ++j) { |
51 |
2/2✓ Branch 0 taken 3 times.
✓ Branch 1 taken 39 times.
|
84 | out_min(j) = std::min( out_min(j), pre_image(j)); |
52 | 84 | out_max(j) = std::max( out_max(j), pre_image(j)); | |
53 | } | ||
54 | } | ||
55 | } | ||
56 | |||
57 | |||
58 | /// @brief Calculate an axis-aligned bounding box in the given map's domain | ||
59 | /// from a spherical bounding box in its range. | ||
60 | template<typename MapType> | ||
61 | inline void | ||
62 | 4 | calculateBounds(const MapType& map, const Vec3d& center, const Real radius, BBoxd& out) | |
63 | { | ||
64 | // On return, out gives a bounding box in continuous index space | ||
65 | // that encloses the sphere. | ||
66 | // | ||
67 | // the image of a sphere under the inverse of the linearMap will be an ellipsoid. | ||
68 | |||
69 | if (math::is_linear<MapType>::value) { | ||
70 | // I want to find extrema for three functions f(x', y', z') = x', or = y', or = z' | ||
71 | // with the constraint that g = (x-xo)^2 + (y-yo)^2 + (z-zo)^2 = r^2. | ||
72 | // Where the point x,y,z is the image of x',y',z' | ||
73 | // Solve: \lambda Grad(g) = Grad(f) and g = r^2. | ||
74 | // Note: here (x,y,z) is the image of (x',y',z'), and the gradient | ||
75 | // is w.r.t the (') space. | ||
76 | // | ||
77 | // This can be solved exactly: e_a^T (x' -xo') =\pm r\sqrt(e_a^T J^(-1)J^(-T)e_a) | ||
78 | // where e_a is one of the three unit vectors. - djh. | ||
79 | |||
80 | /// find the image of the center of the sphere | ||
81 | Vec3d center_pre_image = map.applyInverseMap(center); | ||
82 | |||
83 | std::vector<Vec3d> coordinate_units; | ||
84 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | coordinate_units.push_back(Vec3d(1,0,0)); |
85 |
1/2✓ Branch 1 taken 4 times.
✗ Branch 2 not taken.
|
4 | coordinate_units.push_back(Vec3d(0,1,0)); |
86 |
0/2✗ Branch 0 not taken.
✗ Branch 1 not taken.
|
4 | coordinate_units.push_back(Vec3d(0,0,1)); |
87 | |||
88 | Vec3d& out_min = out.min(); | ||
89 | Vec3d& out_max = out.max(); | ||
90 |
2/2✓ Branch 0 taken 12 times.
✓ Branch 1 taken 4 times.
|
16 | for (int direction = 0; direction < 3; ++direction) { |
91 | 12 | Vec3d temp = map.applyIJT(coordinate_units[direction]); | |
92 | 12 | double offset = | |
93 | 12 | radius * sqrt(temp.x()*temp.x() + temp.y()*temp.y() + temp.z()*temp.z()); | |
94 | 12 | out_min(direction) = center_pre_image(direction) - offset; | |
95 | 12 | out_max(direction) = center_pre_image(direction) + offset; | |
96 | } | ||
97 | |||
98 | } else { | ||
99 | // This is some unknown map type. In this case, we form an axis-aligned | ||
100 | // bounding box for the sphere in world space and find the pre-images of | ||
101 | // the corners in index space. From these corners we compute an axis-aligned | ||
102 | // bounding box in index space. | ||
103 | BBoxd bounding_box(center - radius*Vec3d(1,1,1), center + radius*Vec3d(1,1,1)); | ||
104 | calculateBounds<MapType>(map, bounding_box, out); | ||
105 | } | ||
106 | 4 | } | |
107 | |||
108 | |||
109 | namespace { // anonymous namespace for this helper function | ||
110 | |||
111 | /// @brief Find the intersection of a line passing through the point | ||
112 | /// (<I>x</I>=0, <I>z</I>=−1/<I>g</I>) with the circle | ||
113 | /// (<I>x</I> − <I>xo</I>)² + (<I>z</I> − <I>zo</I>)² = <I>r</I>² | ||
114 | /// at a point tangent to the circle. | ||
115 | /// @return 0 if the focal point (0, -1/<I>g</I>) is inside the circle, | ||
116 | /// 1 if the focal point touches the circle, or 2 when both points are found. | ||
117 | inline int | ||
118 | 2 | findTangentPoints(const double g, const double xo, const double zo, | |
119 | const double r, double& xp, double& zp, double& xm, double& zm) | ||
120 | { | ||
121 | 2 | double x2 = xo * xo; | |
122 | 2 | double r2 = r * r; | |
123 | 2 | double xd = g * xo; | |
124 | 2 | double xd2 = xd*xd; | |
125 | 2 | double zd = g * zo + 1.; | |
126 | 2 | double zd2 = zd*zd; | |
127 | 2 | double rd2 = r2*g*g; | |
128 | |||
129 | 2 | double distA = xd2 + zd2; | |
130 | 2 | double distB = distA - rd2; | |
131 | |||
132 |
1/2✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
|
2 | if (distB > 0) { |
133 | 2 | double discriminate = sqrt(distB); | |
134 | |||
135 | 2 | xp = xo - xo*rd2/distA + r * zd *discriminate / distA; | |
136 | 2 | xm = xo - xo*rd2/distA - r * zd *discriminate / distA; | |
137 | |||
138 | 2 | zp = (zo*zd2 + zd*g*(x2 - r2) - xo*xo*g - r*xd*discriminate) / distA; | |
139 | 2 | zm = (zo*zd2 + zd*g*(x2 - r2) - xo*xo*g + r*xd*discriminate) / distA; | |
140 | |||
141 | 2 | return 2; | |
142 | |||
143 | ✗ | } if (0 >= distB && distB >= -1e-9) { | |
144 | // the circle touches the focal point (x=0, z = -1/g) | ||
145 | ✗ | xp = 0; xm = 0; | |
146 | ✗ | zp = -1/g; zm = -1/g; | |
147 | |||
148 | ✗ | return 1; | |
149 | } | ||
150 | |||
151 | return 0; | ||
152 | } | ||
153 | |||
154 | } // end anonymous namespace | ||
155 | |||
156 | |||
157 | /// @brief Calculate an axis-aligned bounding box in index space | ||
158 | /// from a spherical bounding box in world space. | ||
159 | /// @note This specialization is optimized for a frustum map | ||
160 | template<> | ||
161 | inline void | ||
162 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | calculateBounds<math::NonlinearFrustumMap>(const math::NonlinearFrustumMap& frustum, |
163 | const Vec3d& center, const Real radius, BBoxd& out) | ||
164 | { | ||
165 | // The frustum is a nonlinear map followed by a uniform scale, rotation, translation. | ||
166 | // First we invert the translation, rotation and scale to find the spherical pre-image | ||
167 | // of the sphere in "local" coordinates where the frustum is aligned with the near plane | ||
168 | // on the z=0 plane and the "camera" is located at (x=0, y=0, z=-1/g). | ||
169 | |||
170 | // check that the internal map has no shear. | ||
171 | const math::AffineMap& secondMap = frustum.secondMap(); | ||
172 | // test if the linear part has shear or non-uniform scaling | ||
173 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
|
1 | if (!frustum.hasSimpleAffine()) { |
174 | |||
175 | // In this case, we form an axis-aligned bounding box for sphere in world space | ||
176 | // and find the pre_images of the corners in voxel space. From these corners we | ||
177 | // compute an axis-algined bounding box in voxel-spae | ||
178 | ✗ | BBoxd bounding_box(center - radius*Vec3d(1,1,1), center + radius*Vec3d(1,1,1)); | |
179 | ✗ | calculateBounds<math::NonlinearFrustumMap>(frustum, bounding_box, out); | |
180 | return; | ||
181 | } | ||
182 | |||
183 | // for convenience | ||
184 | Vec3d& out_min = out.min(); | ||
185 | Vec3d& out_max = out.max(); | ||
186 | |||
187 | Vec3d centerLS = secondMap.applyInverseMap(center); | ||
188 | Vec3d voxelSize = secondMap.voxelSize(); | ||
189 | |||
190 | // all the voxels have the same size since we know this is a simple affine map | ||
191 | 1 | double radiusLS = radius / voxelSize(0); | |
192 | |||
193 | double gamma = frustum.getGamma(); | ||
194 | double xp; | ||
195 | double zp; | ||
196 | double xm; | ||
197 | double zm; | ||
198 | int soln_number; | ||
199 | |||
200 | // the bounding box in index space for the points in the frustum | ||
201 | const BBoxd& bbox = frustum.getBBox(); | ||
202 | // initialize min and max | ||
203 | 1 | const double x_min = bbox.min().x(); | |
204 | 1 | const double y_min = bbox.min().y(); | |
205 | 1 | const double z_min = bbox.min().z(); | |
206 | |||
207 | 1 | const double x_max = bbox.max().x(); | |
208 | 1 | const double y_max = bbox.max().y(); | |
209 | 1 | const double z_max = bbox.max().z(); | |
210 | |||
211 | 1 | out_min.x() = x_min; | |
212 | 1 | out_max.x() = x_max; | |
213 | 1 | out_min.y() = y_min; | |
214 | 1 | out_max.y() = y_max; | |
215 | |||
216 | Vec3d extreme; | ||
217 | Vec3d extreme2; | ||
218 | Vec3d pre_image; | ||
219 | // find the x-range | ||
220 | 1 | soln_number = findTangentPoints(gamma, centerLS.x(), centerLS.z(), radiusLS, xp, zp, xm, zm); | |
221 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (soln_number == 2) { |
222 | 1 | extreme.x() = xp; | |
223 | 1 | extreme.y() = centerLS.y(); | |
224 | 1 | extreme.z() = zp; | |
225 | |||
226 | // location in world space of the tangent point | ||
227 | 1 | extreme2 = secondMap.applyMap(extreme); | |
228 | // convert back to voxel space | ||
229 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
230 | 1 | out_max.x() = std::max(x_min, std::min(x_max, pre_image.x())); | |
231 | |||
232 | 1 | extreme.x() = xm; | |
233 | 1 | extreme.y() = centerLS.y(); | |
234 | 1 | extreme.z() = zm; | |
235 | // location in world space of the tangent point | ||
236 | 1 | extreme2 = secondMap.applyMap(extreme); | |
237 | |||
238 | // convert back to voxel space | ||
239 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
240 | 1 | out_min.x() = std::max(x_min, std::min(x_max, pre_image.x())); | |
241 | |||
242 | } else if (soln_number == 1) { | ||
243 | // the circle was tangent at the focal point | ||
244 | } else if (soln_number == 0) { | ||
245 | // the focal point was inside the circle | ||
246 | } | ||
247 | |||
248 | // find the y-range | ||
249 | 1 | soln_number = findTangentPoints(gamma, centerLS.y(), centerLS.z(), radiusLS, xp, zp, xm, zm); | |
250 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
1 | if (soln_number == 2) { |
251 | 1 | extreme.x() = centerLS.x(); | |
252 | 1 | extreme.y() = xp; | |
253 | 1 | extreme.z() = zp; | |
254 | |||
255 | // location in world space of the tangent point | ||
256 | 1 | extreme2 = secondMap.applyMap(extreme); | |
257 | // convert back to voxel space | ||
258 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
259 | 1 | out_max.y() = std::max(y_min, std::min(y_max, pre_image.y())); | |
260 | |||
261 | 1 | extreme.x() = centerLS.x(); | |
262 | 1 | extreme.y() = xm; | |
263 | 1 | extreme.z() = zm; | |
264 | 1 | extreme2 = secondMap.applyMap(extreme); | |
265 | |||
266 | // convert back to voxel space | ||
267 | 1 | pre_image = frustum.applyInverseMap(extreme2); | |
268 | 1 | out_min.y() = std::max(y_min, std::min(y_max, pre_image.y())); | |
269 | |||
270 | } else if (soln_number == 1) { | ||
271 | // the circle was tangent at the focal point | ||
272 | } else if (soln_number == 0) { | ||
273 | // the focal point was inside the circle | ||
274 | } | ||
275 | |||
276 | // the near and far | ||
277 | // the closest point. The front of the frustum is at 0 in index space | ||
278 |
2/4✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
|
1 | double near_dist = std::max(centerLS.z() - radiusLS, 0.); |
279 | // the farthest point. The back of the frustum is at mDepth in index space | ||
280 |
1/2✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
|
2 | double far_dist = std::min(centerLS.z() + radiusLS, frustum.getDepth() ); |
281 | |||
282 | Vec3d near_point(0.f, 0.f, near_dist); | ||
283 | Vec3d far_point(0.f, 0.f, far_dist); | ||
284 | |||
285 | 2 | out_min.z() = std::max(z_min, frustum.applyInverseMap(secondMap.applyMap(near_point)).z()); | |
286 | 2 | out_max.z() = std::min(z_max, frustum.applyInverseMap(secondMap.applyMap(far_point)).z()); | |
287 | |||
288 | } | ||
289 | |||
290 | } // namespace util | ||
291 | } // namespace OPENVDB_VERSION_NAME | ||
292 | } // namespace openvdb | ||
293 | |||
294 | #endif // OPENVDB_UTIL_MAPSUTIL_HAS_BEEN_INCLUDED | ||
295 |